

09/18/2018

Theoretical Study of Concentration Effect of Fluoroethylene Carbonate on SEI Film Formation in Sodium-Ion Batteries Using Red Moon Method

Amine BOUIBES

2nd CREST Workshop

ACS Appl. Mater. Interfaces, 2018, 10 (34), pp 28525–28532

Why sodium (Na)-ion batteries (NIB)?

Solid electrolyte interphase (SEI) film

- The performance of secondary batteries depends strongly on the stability of the SEI film.
- However, it is difficult to observe the SEI film formation processes in experiment.

Fluoroethylene carbonate (FEC) additive

Fluoroethylene carbonate (FEC) was the most appropriate additive among other additives for NIB. [1]

[1] Dahbi, et al. Chem Electro Chem 3. : 1856-1867 (2016).

FEC additive effect

The surface structure of the SEI film which is in contact with the electrolyte became smoother in FEC-added electrolyte. [2-3]

[2] Takenaka et al. J. Phys. Chem. C 119.32 : 18046-18055 (2015).
[3] Zhang, et al. Adv. Funct. Mat. 27.10 (2017).

FEC additive concentration

The **0.5%** of FEC added in total volume of $NaPF_6/PC$ electrolyte was optimal. [1]

[1] Dahbi, et al. Chem Electro Chem 3. : 1856-1867 (2016).

Model systems and computational details

1. Model system

2. <u>Reaction scheme</u>

3. Computational details:

- Red Moon Method (Hybrid MC/MD reaction)
- >Anode surface : 3.41nm × 3.7nm
- >Negative charge of anode surface: -2e
- ≻2000 MC/MD Cycles.
- ➤GAFF Force field
- ➤Temperature: 298 K

SEI film formation process

• Without FEC additive

100 MCMD cycle

500 MCMD cycle

2000 MCMD cycle⁸

Structural properties of SEI film

 Inorganic products (Na₂CO₃ and NaF) were produced on anode surface, while the organic ones (NaPC, Na₂DMBDC) were extended to the outer region of SEI film. This result was in excellent agreement with experimental observations.

Structural properties of SEI film

- Organic products were higher at 1% FEC concentration, and decreased by increasing FEC amounts additive on electrolyte solution.
- Inorganic products and intact FEC inside SEI film increased by increasing FEC additive concentration on electrolyte solution.

Dissociation ratio of SEI film products

FEC additive suppressed remarkably dissociation of SEI film compounds because of its high viscosity. [4]

[4] Ohtake et al, *Electro. chem. Soc.*, **802**. : 175 (2008).

Cavity size inside SEI film

- The SEI film became denser at small FEC concentration.
- By increasing FEC amounts, the cavity size of SEI film increased.

Structural stability of SEI film

- The potential energies per atom (V) of the organic species in the SEI films was more stable at 1% of FEC concentration.
- According to experimental studies, the organic species were observed in outer region of SEI film and constitute around 85 % of SEI film. [5]
- SEI film was more stable at 1% of FEC concentration.

[5] Peled, and Menkin J. Electrochem. Soc. 164 : A1703-A1719 (2017).

Mechanism of FEC concentration effect

The production of organic dimers (Na₂DMBDC) depended on the FEC concentrations.

Mechanism of FEC concentration effect

FEC molecules formed a bridge between two different NaPCs because of its two negative parts (-F and $-CO_3$ groups)

Mechanism of FEC concentration effect

 The formation of FEC bridges between NaPCs prevented the formation of Na₂DMBDC dimers.

Conclusion

- Red moon simulation results showed that SEI film is more stable at small FEC concentration leading to long lifetime of NIB during charge-discharge cycles. This results is in good agreement with experimental data.
- The present study showed that thee stability of SEI film was mainly related to the production of dimer organic products.

Current study

Investiguation of Fire-extinguishing organic electrolytes for safe batteries.

• By increasing the concentration of LiFSA salt, the SEI film formation as well as lifetime of Li-ion batteries were significantly improved.

> However:

The microscopic mechanism of SEI film formation is still not found.

[6] Wang, J., et al. Nature Energy, 3, 22 (2018).