Force Field Parameters Preparation of Different Substituted Dicarboxylate Ligand in Flexible Metal-Organic Frameworks

Shanghua Xing June 28th 2018

The 1st CREST Workshop

Metal-organic Frameworks

Metal Organic Frameworks (MOFs) as a new type of hybrid materials, consist of metal ions or metal-containing clusters connected to multidentate organic ligands via metal coordination.

Rational design of functionalized MOFs by the introduction of substituents

PMMA

Radical polymerization of Poly(methyl methacrylate) (PMMA) and its tacticity

Difficult tacticity control

Unique Tacticty Control

Radical polymerization of MMA by the different ligand in MOF channels¹⁻²

= Terephthalic acid BDC

However, how the ligand affect the tacticity control of PMMA by different substituent from the molecular viewpoint is still under discussion.

The regular and helical conformation result in significant tacticity change.

1. Uemura, T. et al., *Macromolecules* **2008**, *41*, 87.

2. Uemura, T. et al., J. Am. Chem. Soc. 2010, 132, 4917.

Partial DFT Optimization

The optimization model mimic the chemical environment in MOF channel

Partial optimizations, Method: M06-2X/LANL2DZ (for Zn), 6-31G** (for other atoms) $_4$

Different Flexibility by Various Ligands

Pakhira, S. et al., J. Phys. Chem. C. 2015, 119, 28789.

Preferred Model Construction

Partial optimizations, Method: M06-2X/LANL2DZ (for Zn), 6-31G** (for other atoms)

Substituent-dependent Planarity

□ Halogen substituent groups (F, Cl, Br) in BDC linker

MOF_BDC with TMA cap		Linker dihedral (deg.)	Equilibrium X-H (closest on TMA) distance (Å)
	Monosubstituent	0.0	2.82
F	2,5-disubstituent	0.0	2.85
	2,3-disubstituent	0.0	2.81
	Monosubstituent	19	2.69
Cl	2,5-disubstituent	34	2.90
	2,3-disubstituent	46	3.05
	Monosubstituent	27	2.80
Br	2,5-disubstituent	40	2.98
	2,3-disubstituent	50	3.13

VDW radius:

Electrostatic attraction decrease in the order of mono > 2,5di > 2,3di. (The calculated charge of H atom in TMA molecule on each model is almost unchanged.

2,5-di

Substituent position

2,3-di

-0.04

-0.08

-0.12

-0.16

-0.20

mono

ChelpG charge

F Cl Br

Planar structure because of small Van der Waals (VDW) force Nonplanar structure because of VDW repulsion

Substituent-dependent Planarity

□ Larger substituent groups (OCH₃) in BDC linker

Substituent-dependent Planarity

□ Larger substituent groups (CH₃, NH₂) in BDC linker

MOF_BDC with TMA cap		Linker dihedral (deg.)	
	Mono-substituent	16	
CH ₃	2,5-disubstituent	28	
	2,3-disubstituent	44	
	Mono-substituent	0.6	
NH ₂	2,5-disubstituent	2	
	2,3-disubstituent	0.8	

VDW repulsion plays an important Role in CH₃ substituted models. Electrostatic repulsion affect the NH₂ optimized models

TMA Rotation Effect

□ BDC_MOF without substituent

□ BDC_MOF with halogen atoms (F, Cl and Br)

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Μ	OF_BDC with TMA cap	TMA dihedral	∆E(at60- at0) (kJ/mol)	Linker Dihedral (deg.)	Equilibrium X-H (closest on TMA) distance (Å)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Monocubstituent	at 0	0.00	0.0	2.82
at 0 0.00 0.0 2.85 at 60 0.98 0.0 3.01 at 0 0.00 0.0 2.85	F	Monosubstituent	at 60	1.31	0.1	2.99
at 0 0.00 0.0 2.81		2,5-disubstituent	at 0	0.00	0.0	2.85
at 0 0.00 0.0 2.81			at 60	0.98	0.0	3.01
2.3 disubstituent		2.2 disubstituent	at 0	0.00	0.0	2.81
at 60 0.53 0.0 2.98		z,5-uisubstituent	at 60	0.53	0.0	2.98

	Managuhatituant	at 0	0.00	about 19	2.69
CI	Monosubstituent	at 60	-3.68	0.8	2.87
	2,5-disubstituent	at 0	0.00	about 34	2.90
		at 60	0.26	0.0	2.92
	2,3-disubstituent	at 0	0.00	about 46	3.05
		at 60	13.65	0.1	2.76
Br	Monosubstituent	at 0	0.00	about 27	2.80
		at 60	-4.99	0.7	2.86
	2,5-disubstituent	at 0	0.00	about 40	2.98
		at 60	0.26	0.0	2.91
	2,3-disubstituent	at 0	0.00	about 50	3.13
		at 60	27.04	0.1	2.72

The trend of the most stable conformation depends on the substituents

The sum of VDW radius: H-F: 2.67 Å H-Cl: 2.95 Å H-Br: 3.05 Å

TMA Rotation Effect

\square BDC_MOF with CH₃, NH₂ and OCH₃ substituents

	MOF_B	DC with TMA cap	TMA dihedral	ΔE(at60- at0) (kJ/mol)	Linker Dihedral (deg.)	Equilibrium O-H (closest on TMA) distance (Å)
		monocubetituont	at 0	0.00	0.1	2.73
oc	OCH	monosubstituent	at 60	1.05	0.1	2.87
		2,5-disubstituent	at 0	0.00	0.1	2.76
			at 60	1.05	0.3	2.93
		2,3-disubstituent	at 0	0.00	about 41	-
			at 60	-4.99	about 23	-

		monocubetituont	at 0	0.00	0.6	2.13
NH ₂		monosubstituent	at 60	1.05	about 1	2.23
		2,5-disubstituent	at 0	0.00	about 2	2.13
			at 60	0.79	about 3	2.25
		2,3-disubstituent	at 0	0.00	0.8	2.14
			at 60	0.26	0.7	2.20
		monosubstituent	at 0	0.00	about 16	2.27
			at 60	-1.58	about 12	2.35
	сц	2,5-disubstituent	at 0	0.00	about 28	2.22
			at 60	-2.63	about 24	2.31
		2,3-disubstituent	at 0	0.00	about 44	2.63
			at 60	-0.05	about 45	2.56

Ignorable energy difference found in BDC model with NH₃ cap

MOF_	BDC with NH ₃ cap	NH ₃ dihedral	∆E(at60-at0) (kJ/mol)
	monosubstituent	at 0 at 60	0.00
F	2 E-dicubstituont	at 0	0.00
	2,5-uisubstituerit	at 60	0.53
	2.3-disubstituent	at 0	0.00
	275 disabstituent	at 60	0.53
	monosubstituent	at 0	0.00
	monobubbentuent	at 60	0.53
CI	2,5-disubstituent	at 0	0.00
		at 60	1.05
	2,3-disubstituent	at 0	0.00
		at 60	2.36
	monosubstituent 2,5-disubstituent	at 0	0.00
		at 60	0.53
Br		at 0	0.00
		at 60	1.31
	2,3-disubstituent	at 0	0.00
	,	at 60	0.16
	monosubstituent	at 0	0.00
		at 60	0.79
OCH ₃	2,5-disubstituent		0.00
	•		1.05
	2,3-disubstituent		0.00
			0.79
	monosubstituent	at 0	0.00
			0.00
NH ₂	2,5-disubstituent	at 60	0.00
		at 0	0.00
	2,3-disubstituent	at 60	-0.79
		at 0	0.00
	monosubstituent	at 60	0.26
		at 0	0.00
CH ₃	2,5-disubstituent	at 60	0.26
		at 0	0.00
	2,3-disubstituent	at 60	0.26

Charge Determination by ChelpG method

Determine the charge of BDC linker with different substituents and TED molecule

The charge distribution of BDC linker is changed by different substituents 12

Force field Fitting

The flexible force field parameters of BDC model without substituent have been already reported.¹

For substituted BDC models (F, Cl, Br, CH₃, NH₂ and OCH₃), FF parameters are optimized by fitting the relative energy differences and optimized structure to DFT calculation.

4 optimized conformation (by rotating TMA cap at 0, 30, 30_1 and 60 degree, respectively).

4 partially relaxed scan with 10 degree interval for 10 times.

In total, 44 conformations used for MM optimization on each substituted model.

1. Paesani, F. et al., J. Am. Chem. Soc. 2012, 134, 4207.

Force field Fitting

The procedure of FF fitting:

The order of FF fitting is determined by the initial evaluation score on each model

Summary

1. The ligand-dependent equilibrium planar or nonplanar structure depends on the substituents (F, Cl, Br, NH₂, CH₃, OCH₃).

The planar structure will have confinement effect on PMMA, in contrast, PMMA polymerization can diffuse in three dimensional direction.

2. The polarity or the charge distribution in BDC linker is changed by different substituents.

The different electrostatic attraction or repulsion between PMMA and MOF pore surface will affect the localization of PMMA.

3. The bulky substituents (NH_2 , CH_3 and OCH_3) will fill the pore space, resulting in the narrower channel than the halogen substituents.

The steric hindrance between bulky substituents and PMMA may exist.

The above factors may play important roles in the tacticity control of PMMA polymerization in MOF channel by different substituents