DFT study on the propylene reaction on Kaminsky catalyst in $[CH_3B(C_6F_5)_3]^-$ And MD simulation on the binding of propylene with the catalyst

> 23/10/2014 K. S. Sandhya

Outline

- Reaction mechanism of first insertion of four different mode of propylene attack in the presence of counter anion (CA).
- Second insertion of propylene in the presence of CA.
- Force field parameter development for the binding of propylene.
- Two different method for atomic charge generation (CHelpG, NPA).
- Comparing the geometry from DFT and from MD.
- MD simulation of binding of propylene with A mode of attack using two different atomic charges.
- Implementation of the force filed parameters for the C and B mode of attack for MD simulation.
- Future plan

DFT study on the propylene reaction on Kaminsky catalyst in $[CH_3B(C_6F_5)_3]^-$

Counter anion : co-catalyst

We have considered four different mode of propylene attack to the pre-catalyst (without propylene) along with counter anion.

The four mode of propylene attack to the pre-catalyst.

Reaction mechanism scheme

• Propylene can react with pre-catalyst to give four possible products through transition states

Four centered transition state

Method

For **A** attack M06/6-31++ G (d,p) LanL2DZ Activation barrier 4.25 [kcal/mol]

Method M06/6-31G(d,p), LanL2DZ for Zr SP calc. M06/def2_TZVPP

Energy [kcal/mol]	Α	С	В	D
Activation barrier	5.40	3.94	9.92	22.50
Activation barrier	4.75	5.75	8.86	20.61

• A and C mode of propylene attack is favorable compared to B and D mode of approach.

Second Insertion of propylene attack

Overall energy profile for the insertion of propylene in the presence of counter anion.

Method : M06/6-31G (d,p) LanL2DZ

Complex name	Relative energy [kcal/mol] A-A C-C		
Intl	0	0	
Rea1	-25.28	-25.47	
TS1	-15.88	-21.52	
Pdt1	-30.98	-37.71	
Rea2	-39.98	-40.62	
TS2	-39.31	-38.1	
Pdt2	-57.63	-77.72	

A-A -> First and second
insertion by A style approach of
propylene
C-C -> First and second insertion by
C style approach of propylene

Intl = Initial geometry without propylene attack TS means transition states Rea means reactants Pdt means products

• This table clearly explain the polymerization of Propylene is taking place with decrease in energy of reaction. That is as reaction is proceeds the polymer become more stabilized compared to initial complex.

Force field parameter development using DFT

Force field parameters are created using the equation given below

$$E_{\text{total}} = \sum_{\text{bonds}} K_r (r - r_{\text{eq}})^2 + \sum_{\text{angles}} K_\theta (\theta - \theta_{\text{eq}})^2 + \sum_{\text{angles}} K_$$

$$\sum_{\text{dihedrals}} \frac{V_n}{2} [1 + \cos(n\phi - \gamma)] + \sum_{i < j} \left[\frac{A_{ij}}{R_{ij}^{-12}} - \frac{B_{ij}}{R_{ij}^{-6}} + \frac{q_i q_j}{\epsilon R_{ij}} \right]$$

One example for finding the force constant for bond between zr-c1. M06/6-31++ G(d,p), LanL2DZ for Zr

Force field parameters created

Bond	K1	Distance [Å]
zr-c2	204	2.58
zr-c9	258	3.011
c9-ha	396	1.094
c2-hb	396	1.091
c2-hd	399	1.093
c9-c2	590	1.324
c9-c3	314	1.481
zr-cp	219	2.43
c4-ha	367	1.099
zr-c4	150	2.242

Angle	K2	Angle [°]
si-c5-z	r 7.50	98.85
zr-c2-h	b 1.28	103.1
zr-c2-h	d 2.09	86.42
zr-c9-h	a 3.96	95.58
zr-c2-c	9 4.18	94.29
zr-c9-c	2 0.03	59.07
zr-c9-c	3 2.09	117.71

Dihedral angle	Multiplicity	K3	φ [°]	Periodicity , n
c4-zr-c2-c9	1	51	360	1
c4-zr-c9-c3	1	58	360	1

Other parameters taken from Previous papers ^{a,b}

Bond	K1	Distance [Å]
c3-hc	345	1.09
c4-hc	340	1.09
zr-c5	137	2.38
zr-c4	200	2.26
si-c5	506	1.90

Angle	K2	Angle [°]
hc-c4-hc	35	109.5
si-c3-hc	35	109.5
c3-si-c3	40	109.5
zr-c4-hc	150	109.5
si-c5-c5	40	126.0
c5-c3-c3	70	109.5
c5-si-c5	70	109.5
c3-si-c5	22	109.5

Atom type	Vander Waals depth,ɛ [kcal/mol]	Vander Waals radius, [Å]
Zľ	1.000	0.000
si	1.908	0.086
c4	1.910	0.130

a. Bosnich et. al., J. Am. Chem. Soc., 1995, 117, 1352-1368

 b. Brintzinger et.al., J. Mol. Struc., 1999, 485-486, 409-419

Parameters used to DFT optimized structure of C mode of attack

Force field parameters are created for this complex Atom types used for this complex

Solvent Pentane Atomic charges from two method 1. CHelpG M06/6-31++G(d,p) 2. NPA M06/6-31++G(d,p)

> New script has written for the extraction of atomic charge calculated from the Gaussian 09 out put gesp file to prepin file.

Structural comparison between DFT optimized geometry and MD minimized geometry

Structural Parameters of A	DFT	MD (atomic charge from CHelpG)	MD (atomic charge from NPA)
zr-c2	2.589	2.616	2.648
zr-c9	3.010	3.017	3.039
zr-c4	2.243	2.299	2.358
zr-cp	2.430	2.43	2.410
zr-c2-hb	104	104	104
zr-c2-hb	85	80	73
zr-c9-ha	95	95	125
zr-c9-c3	119	120	89
c4-zr-c2-c9	20	19	20

	Atomic charges		
Atom type	NPA	CHelpG	
zr	0.937	1.237	
c4:	-0.456	-1.123	
c2 :	-0.226	-0.584	
c9 :	0.75	-0.025	
si :	0.666	1.850	

MD minimized Geometry obtained using CHelpG atomic charges is more similar to DFT structure.

MD simulation of propylene bonded activated complex, A – CHelpG method for atomic charge c9-c2-zr-c4

Dihedral angle, c4-zr-c2-c9 [þ]

MD -> Dt = 0.001, NSTLIM = 50000 TEMP = 300 K Pressure = 1 atm Various metastable structures during MD simulation

This Figures clearly indicate that various rotations possible for the Propylene when it bound to the reactive pre-catalyst.

MD simulation of propylene bonded activated complex, A

H₃C H₃C H₃C CH₃ A

In this figure also clearly shed the presence of metastable structures

Various metastable structures during MD simulation 32.11 13.65 ps 18.75 ps

MD simulation of propylene bonded activated complex, C

DFT studies on rotation of propylene

Complex name	Relative energy [kcal/mol]	Complex name	Relative energy in [kcal/mol]
Α	0	С	0
TS1	0.83	TS1	2.43
Metastate	-0.27	Metastate	0.13
TS2	2.35	TS2	2.35
В	0.59	D	0.41

Future plan REACTION SCHEME FOR MC/MD

- Preparing force field parameters for the products
- Writing a paper regarding the force field development of intermediate state for MD simulation and the DFT studies on the metastable state. Target time- one month.
- Force field parameter for C mode attack of propylene and use of **Merz-Singh-Kollman (MK)** method to assign atomic charge to A mode of attack.

Conclusions

- DFT studies on the reaction mechanism of four different attack of propylene in the presence of the counter anion show a decrease in the activation barrier.
- Numerous force field parameters are developed and successfully implemented for MD simulation.
- Various metastable structures are observed in MD simulation.
- TS's for the metastable structures confirm that activation barrier is very less (3 kcal/mol).

Thank you