FY2018 5th CREST Workshop

Towards Reproduction of Stereochemistry of Polypropylene by Using Red Moon Method

Dr. Yuichi Tanaka

2019/03/05

Introduction: Polyolefins

- Polyethylene
- Polypropylene
- Polystyrene
- Polyvinyl chloride

Global market for polypropylene

$$
\sim 5.5 \times 10^{7} \mathrm{t}(\text { in 2013 })^{[1]}
$$

Introduction: Stereochemistry of Polypropylene

Tacticity affects the properties of polymer.
\rightarrow The control of the tacticity is important.

Introduction: Stereochemistry of Polypropylene

isotactic polypropylene $[2,3]$

syndiotactic polypropylene $[2,3]$

Introduction: Stereochemistry of Polypropylene

C_{2} symmetric ansa-zirconocene catalyst,
$\left.\left[\mathrm{SiMe}_{2} \text { (Ind) }\right)_{2} \mathrm{ZrMe}\right]^{+}\left[\mathrm{MeB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$(1) $[4]$
Instantaneous and microscopic polymerization reaction process cannot be observed by experiments.

By using Red Moon (RM) method, we can observe the instantaneous and microscopic changes by polymerization reaction from an initial state to the final one.

Purpose

To reproduce the polymerization reaction catalyzed by (1) using RM method

a-Olefin Polymerization Reaction by Catalyst

(1) coordination of the monomer (olefin) to the catalyst
(2) insertion of the olefin into the metal-alkyl bond
(3) repetition of step (2)

Coordination Patterns of Propylene

Coordination Patterns of Propylene

Reaction Conditions

Residue Name

Reaction Conditions

(1)1st insertion A: ReactID=1, $\mathrm{Ea}=7.80, \mathrm{dE}=0.01$

$$
\begin{aligned}
& r(\mathrm{Zr}-\mathrm{C} 71)<3.8 \AA ; \\
& r(\mathrm{Zr}-\mathrm{C} 72)<3.8 \AA ; \\
& r(\mathrm{C} 21-\mathrm{C} 72)<5.0 \AA ; \\
& -90^{\circ} \leq \varphi(\mathrm{C} 21-\mathrm{Zr}-\mathrm{C} 71-\mathrm{C} 72) \leq 90^{\circ} ; \\
& 0^{\circ} \leq \varphi(\mathrm{Zr}-\mathrm{C} 71-\mathrm{C} 72-\mathrm{C} 73) \leq 180^{\circ}
\end{aligned}
$$

(2)1st insertion C: ReactID=2, $\mathrm{Ea}=9.22, \mathrm{dE}=0.20$

$$
\begin{aligned}
& r(\mathrm{Zr}-\mathrm{C} 71)<3.8 \AA ; \\
& r(\mathrm{Zr}-\mathrm{C} 72)<3.8 \AA ; \\
& r(\mathrm{C} 21-\mathrm{C} 72)<5.0 \AA ; \\
& -90^{\circ} \leq \varphi(\mathrm{C} 21-\mathrm{Zr}-\mathrm{C} 71-\mathrm{C} 72) \leq 90^{\circ} ; \\
& -180^{\circ} \leq \varphi(\mathrm{Zr}-\mathrm{C} 71-\mathrm{C} 72-\mathrm{C} 73) \leq 0^{\circ}
\end{aligned}
$$

Ea: activation barrier, dE: reaction energy

Reaction Conditions

(3)2nd and after 2nd insertions A-u: ReactID=3, Ea=8.50, dE=-5.83

$$
\begin{aligned}
& r(Z r-C 71(P R P))<3.8 \AA \text {; } \\
& r(\mathrm{Zr}-\mathrm{C} 72(\mathrm{PRP}))<3.8 \AA \text {; } \\
& r(\mathrm{C} 71 \text { (PRC)-C72(PRP)) < } 5.0 \AA \text {; } \\
& -90^{\circ} \leq \varphi(\mathrm{C} 71(\mathrm{PRC})-\mathrm{Zr}-\mathrm{C} 71(\mathrm{PRP})-\mathrm{C} 72(\mathrm{PRP})) \leq 90^{\circ} \text {; } \\
& 0^{\circ} \leq \varphi(\mathrm{Zr}-\mathrm{C} 71(\mathrm{PRP})-\mathrm{C} 72(\mathrm{PRP})-\mathrm{C} 73(\mathrm{PRP})) \leq 180^{\circ} \text {; } \\
& -180^{\circ} \leq \varphi(\mathrm{C71}(\mathrm{PRP})-\mathrm{Zr}-\mathrm{C} 71(\mathrm{PRC})-\mathrm{C} 72(\mathrm{PRC})) \leq 0^{\circ}
\end{aligned}
$$

(4)2nd and after 2nd insertions A-d: ReactID=4, Ea=6.15, dE=-7.76

```
r(Zr-C71(PRP)) < 3.8 A;
r(Zr-C72(PRP)) < 3.8 A;
r(C71(PRC)-C72(PRP)) < 5.0 A;;
-90
0}
0
```


Reaction Conditions

(5)2nd and after 2nd insertions C-u: ReactID=5, Ea=3.49, dE=-5.78 most favorable pathway

$$
\begin{aligned}
& r(\mathrm{Zr}-\mathrm{C} 71(\mathrm{PRP}))<3.8 \AA ; \\
& r(\mathrm{Zr}-\mathrm{C} 72(\mathrm{PRP}))<3.8 \AA ; \\
& r(\mathrm{C} 71(\mathrm{PRC})-\mathrm{C} 72(\mathrm{PRP}))<5.0 \AA ; \\
& -90^{\circ} \leq \varphi(\mathrm{C} 71(\mathrm{PRC})-\mathrm{Zr}-\mathrm{C} 71(\mathrm{PRP})-\mathrm{C} 72(\mathrm{PRP})) \leq 90^{\circ} ; \\
& -180^{\circ} \leq \varphi(\mathrm{Zr}-\mathrm{C} 71(\mathrm{PRP})-\mathrm{C} 72(\mathrm{PRP})-\mathrm{C} 73(\mathrm{PRP})) \leq 0^{\circ} ; \\
& -180^{\circ} \leq \varphi(\mathrm{C} 71(\mathrm{PRP})-\mathrm{Zr}-\mathrm{C} 71(\mathrm{PRC})-\mathrm{C} 72(\mathrm{PRC})) \leq 0^{\circ}
\end{aligned}
$$

(62nd and after 2nd insertions C-d: ReactID=6, $\mathrm{Ea}=5.20, \mathrm{dE}=-9.80$

$$
\begin{aligned}
& r(\mathrm{Zr}-\mathrm{C} 71(\mathrm{PRP}))<3.8 \AA ; \\
& r(\mathrm{Zr}-\mathrm{C} 72(\mathrm{PRP}))<3.8 \AA ; \\
& r(\mathrm{C} 71(\mathrm{PRC})-\mathrm{C} 72(\mathrm{PRP}))<5.0 \AA ; \\
& -90^{\circ} \leq \varphi(\mathrm{C} 71(\mathrm{PRC})-\mathrm{Zr}-\mathrm{C} 71(\mathrm{PRP})-\mathrm{C} 72(\mathrm{PRP})) \leq 90^{\circ} ; \\
& -180^{\circ} \leq \varphi(\mathrm{Zr}-\mathrm{C} 71(\mathrm{PRP})-\mathrm{C72}(\mathrm{PRP})-\mathrm{C} 73(\mathrm{PRP})) \leq 0^{\circ} ; \\
& 0^{\circ} \leq \varphi(\mathrm{C} 71(\mathrm{PRP})-\mathrm{Zr}-\mathrm{C} 71(\mathrm{PRC})-\mathrm{C} 72(\mathrm{PRC})) \leq 180^{\circ}
\end{aligned}
$$

Computational Details

All MD calculations were performed by PMEMD in AMBER14.
Periodic boundary condition was applied.
SHAKE algorithm was used.
RM simulation was performed in NVT ensemble at 300 K .
Search MD: 50 ps
Configurations were sampled every 0.5 ps (100 snapshots).
To correctly represent the cation-counteranion and cation-propylene interactions, I modified the Lennard-Jones (LJ) parameters based on the QM calculations.

LJ Parameters for the Cation-Counteranion and Cation-Propylene Interactions

	$\varepsilon\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]$	$r^{e}[\AA]$		$\varepsilon\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]$	$r^{e}[\AA]$
$\mathrm{Zr}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	0.300	2.600	$\mathrm{Zr}-\mathrm{C}(\mathrm{c} 2)$	1.842	2.304
$\mathrm{Zr}-\mathrm{F}$	0.500	2.980	$\mathrm{Zr}-\mathrm{C}(\mathrm{c} 9)$	2.276	2.848

Red Moon Simulation

I executed the RM simulation
(System: 1 ion-pair, 120 propylene, and 480 solvent pentane). \rightarrow Reaction candidates were never appeared.

$1.4 \mu \mathrm{~s}$ MD Simulation

CH_{3} group coordination
propylene

AASO

propylene coordination

The associative active site opening (AASO) occurs only once.

Red Moon Simulation

Either A or C was observed.
\rightarrow Sampling in Search MD is insufficient.

System: 1 cation, 120 propylene, and 480 solvent pentane

React. Candidate

Cycle	3 ReactID	1 Accepted	A	Only A
Cycle	4 ReactID	5 Accepted	C-u	Only C
Cycle	6 ReactID	5 Accepted	C-u	Only C
Cycle	11 ReactID	5 Accepted	$\mathrm{C}-\mathrm{u}$	Only C
Cycle	22 ReactID	4 Accepted	A-d	Only A
Cycle	30 ReactID	3 Accepted	A-u	Only A
Cycle	31 ReactID	3 Accepted	A-u	Only A
Cycle	33 ReactID	4 Accepted	A-d	Only A
Cycle	35 ReactID	4 Accepted	A-d	Only A
Cycle	36 ReactID	5 Accepted	C-u	Only C
Cycle	46 ReactID	4 Accepted	A-d	Only A
Cycle	47 ReactID	3 Accepted	A-u	Only A
Cycle	48 ReactID	5 Accepted	$\mathrm{C}-\mathrm{u}$	Both A and C
Cycle	51 ReactID	6 Accepted	C-d	Only C
Cycle	53 ReactID	3. Accepted	A-u	Only A
Cycle	60 ReactID	4 Accepted	A-d	Only A
Cycle	61 ReactID	5 Accepted	$\mathrm{C}-\mathrm{u}$	Only C
Cycle	63 ReactID	5 Accepted	C-u	Only C
Cycle	64 ReactID	6 Accepted	C-d	Only C
Cycle	67 ReactID	5 Accepted	C-u	Only C
Cycle	77 ReactID	5 Accepted	$\mathrm{C}-\mathrm{u}$	Only C
Cycle	78 ReactID	3 Accepted	A-u	Only A
Cycle	79 ReactID	5 Accepted	C-u	Only C
Cycle	82 ReactID	3 Accepted	A-u	Only A

Cycle	110 ReactID	3 Accepted	A-u	Only A
Cycle	118 ReactID	3 Accepted	A-u	Only A
Cycle	121 ReactID	5 Accepted	$\mathrm{C}-\mathrm{u}$	Only C
Cycle	124 ReactID	5 Accepted	$\mathrm{C}-\mathrm{u}$	Only C
Cycle	183 ReactID	3 Accepted	A-u	Only A
Cycle	232 ReactID	3 Accepted	A-u	Only A
Cycle	335 ReactID	4 Accepted	A-d	Only A
Cycle	337 ReactID	4 Accepted	A-d	Only A
Cycle	341 ReactID	4 Accepted	A-d	Only A
Cycle	344 ReactID	5 Accepted	$\mathrm{C}-\mathrm{u}$	Only C
Cycle	348 ReactID	3 Accepted	A-u	Only A
Cycle	349 ReactID	3 Accepted	A-u	Only A
Cycle	354 ReactID	6 Accepted	C-d	Only C
Cycle	355 ReactID	5 Accepted	C-u	Only C
Cycle	357 ReactID	3 Accepted	A-u	Only A
Cycle	362 ReactID	4 Accepted	A-d	Only A
Cycle	363 ReactID	5 Accepted	C-u	Only C
Cycle	364 ReactID	5 Accepted	$\mathrm{C}-\mathrm{u}$	Only C
Cycle	365 ReactID	3 Accepted	A-u	Only A
Cycle	367 ReactID	5 Accepted	$\mathrm{C}-\mathrm{u}$	Only C
Cycle	376 ReactID	4 Accepted	A-d	Only A
Cycle	378 ReactID	6 Accepted	C-d	Only C
Cycle	383 ReactID	3 Accepted	A-u	Only A
Cycle	386 ReactID	4 Accepted	A-d	Only A

Red Moon Simulation

Once propylene coordinates to Zr , the $п$-complex hardly dissociates.
It is preferable that the number of the reaction candidates of A and C are almost same.

To solve this problem, I optimized the LJ parameter, $\boldsymbol{\varepsilon}$, of $\mathbf{Z r} \mathbf{- C}\left(\mathbf{s p}^{2}\right)$.

Optimization of ε

System:

1 cation $(n=1,2)$, $(120-n)$ propylene, and 480 solvent pentane (n : the number of the inserted propylene)

		$\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]$
ε	1.842	2.276
0.33ε	0.614	0.759
0.50ε	0.921	1.138
0.55ε	1.013	1.252
0.60ε	1.105	1.366
0.66ε	1.228	1.517

10 MD simulations for 5 ns were performed (total: 50 ns). The average of the number of the reaction candidates per 1 ns were obtained.

Optimization of ε

		React ID				\leftarrow Very small
		3 (A-u)	4 (A-d)	5 (C-u)	6 (C-d)	
0.33ε	ave.	2.4	4.2	3.3	4.2	
	ratio	0.720	1.287	1.000	1.274	
0.50ع	ave.	43.5	33.5	46.7	41.7	\leftarrow Balance is better.
	ratio	0.932	0.717	1.000	0.894	
0.55ε	ave.	93.4	77.8	105.5	70.0	
	ratio	0.885	0.738	1.000	0.664	
0.60ع	ave.	172.4	133.8	203.8	116.8	
	ratio	0.846	0.657	1.000	0.573	
0.668	ave.	269.4	185.5	322.8	173.3	
	ratio	0.835	0.575	1.000	0.537	

ave.: average; 5 (C-u) was set to the reference (1.000).
Configurations were sampled every 0.5 ps (2000 snapshots).

Optimization of ε

$$
n=2
$$

ave.: average; 5 (C-u) was set to the reference (1.000).
Configurations were sampled every 0.5 ps (2000 snapshots).

Red Moon Simulation

System: 1 cation, 120 propylene, and 480 solvent pentane; Search MD: 1 ns

Cycle	1 ReactID	1 Accepted	A	Cycle	80 ReactID	6 Accepted	C-d
Cycle	4 ReactID	5 Accepted	C-u	Cycle	81 ReactID	5 Accepted	C-u
Cycle	11 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	82 ReactID	5 Accepted	C-u
Cycle	13 ReactID	5 Accepted	C-u	Cycle	85 ReactID	5 Accepted	C-u
Cycle	17 ReactID	5 Accepted	C-u	Cycle	88 ReactID	5 Accepted	C-u
Cycle	18 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	91 ReactID	5 Accepted	C-u
Cycle	21 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	95 ReactID	3. Accepted	A-u
Cycle	22 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	96 ReactID	5 Accepted	C-u
Cycle	23 ReactID	$5 \ldots . .$. Accepted	C-u	Cycle	98 ReactID	4 Accepted	A-d
Cycle	26 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	103 ReactID	4 Accepted	A-d
Cycle	28 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	105 ReactID	5 Accepted	C-u
Cycle	29 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	108 ReactID	$5 \ldots .$. Accepted	C-u
Cycle	31 ReactID	5 Accepted	C-u	Cycle	109 ReactID	5 Accepted	C-u
Cycle	32 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	112 ReactID	5 Accepted	C-u
Cycle	38 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	115 ReactID	$5 \ldots .$. Accepted	C-u
Cycle	41 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	116 ReactID	3. Accepted	A-u
Cycle	42 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	117 ReactID	5 Accepted	C-u
Cycle	43 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	119 ReactID	5 Accepted	C-u
Cycle	48 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	126 ReactID	5 Accepted	C-u
Cycle	55 ReactID	$5 \ldots . .$. Accepted	C-u	Cycle	127 ReactID	5..... Accepted	C-u
Cycle	56 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	132 ReactID	5 Accepted	C-u
Cycle	61 ReactID	3 Accepted	A-u	Cycle	133 ReactID	6 Accepted	C-d
Cycle	65 ReactID	$5 \ldots .$. Accepted	C-u	Cycle	135 ReactID	5 Accepted	C-u
Cycle	67 ReactID	$5 \ldots . .$. Accepted	$\mathrm{C}-\mathrm{u}$	Cycle	137 ReactID	5 Accepted	C-u

Summary and Conclusions

To reproduce the polymerization reaction catalyzed by (1) using RM method

- Reaction conditions were established for RM simulation.
- LJ parameters, ε, was optimized for proper sampling in Search MD.
- RM simulation of without-counteranion system is now in progress.

Perspective

- I will perform RM simulation of with-counteranion system.
\rightarrow Modification of LJ parameters between cation and counteranion will be needed.

