FY2018 5th CREST Workshop

1

Towards Reproduction of Stereochemistry of Polypropylene by Using Red Moon Method

Dr. Yuichi Tanaka

2019/03/05

Introduction: Polyolefins

- Polyethylene
- · Polypropylene
- Polystyrene
- Polyvinyl chloride

Global market for polypropylene $\sim 5.5 \times 10^7$ t (in 2013)^[1]

Introduction: Stereochemistry of Polypropylene

Tacticity affects the properties of polymer. \rightarrow The control of the tacticity is important.

Introduction: Stereochemistry of Polypropylene

[2] Yoshida, T.; Koga, N.; Morokuma, K. Organometallics **1996**, *15*, 766.
[3] Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev. **2000**, *100*, 1345.

Introduction: Stereochemistry of Polypropylene

 C_2 symmetric *ansa*-zirconocene catalyst, [SiMe₂(Ind)₂ZrMe]⁺[MeB(C₆F₅)₃]⁻ (**1**) [4]

Instantaneous and microscopic polymerization reaction process cannot be observed by experiments.

By using Red Moon (RM) method, we can observe the instantaneous and microscopic changes by polymerization reaction from an initial state to the final one.

Purpose

To reproduce the polymerization reaction catalyzed by (1) using RM method

a-Olefin Polymerization Reaction by Catalyst

coordination of the monomer (olefin) to the catalyst
 insertion of the olefin into the metal-alkyl bond
 repetition of step 2

[5] Motta, A.; Fragalà, I. L.; Marks, T. J. J. Chem. Theory Comput. 2013, 9, 3491.
[6] Kaminsky, W. J. Chem. Soc., Dalton Trans. 1998, 1413.

7

Coordination Patterns of Propylene

Coordination Patterns of Propylene

1st insertion: 2 patterns (A and C)
Orientation of CH₃ of propylene
A: up
C: down

2nd and after 2nd insertions: 4 patterns (A-u, A-d, C-u, and C-d) Projection of growing polymer chain u: up d: down

C-u is the most favorable pathway.

[4] Sandhya, K. S.; Koga, N.; Nagaoka, M. Bull. Chem. Soc. Jpn. 2016, 89, 1093.


```
(1)1st insertion A: ReactID=1, Ea=7.80, dE=0.01

r(Zr-C71) < 3.8 \text{ Å};

r(Zr-C72) < 3.8 \text{ Å};

r(C21-C72) < 5.0 \text{ Å};

-90^{\circ} \le \varphi(C21-Zr-C71-C72) \le 90^{\circ};

0^{\circ} \le \varphi(Zr-C71-C72-C73) \le 180^{\circ}
```

```
②1st insertion C: ReactID=2, Ea=9.22, dE=0.20

r(Zr-C71) < 3.8 \text{ Å};

r(Zr-C72) < 3.8 \text{ Å};

r(C21-C72) < 5.0 \text{ Å};

-90^{\circ} \le \varphi(C21-Zr-C71-C72) \le 90^{\circ};

-180^{\circ} \le \varphi(Zr-C71-C72-C73) \le 0^{\circ}
```

Ea: activation barrier, dE: reaction energy

③2nd and after 2nd insertions A-u: ReactID=3, Ea=8.50, dE=-5.83 r(Zr-C71(PRP)) < 3.8 Å; r(Zr-C72(PRP)) < 3.8 Å; r(C71(PRC)-C72(PRP)) < 5.0 Å; $-90^{\circ} \le \varphi(C71(PRC)-Zr-C71(PRP)-C72(PRP)) \le 90^{\circ};$ $0^{\circ} \le \varphi(Zr-C71(PRP)-C72(PRP)-C73(PRP)) \le 180^{\circ};$ $-180^{\circ} \le \varphi(C71(PRP)-Zr-C71(PRC)-C72(PRC)) \le 0^{\circ}$

(4) 2nd and after 2nd insertions A-d: ReactID=4, Ea=6.15, dE=−7.76 r(Zr-C71(PRP)) < 3.8 Å; Zr − r(C71(PRC)-C72(PRP)) < 5.0 Å; $-90^{\circ} \le \varphi(C71(PRC)-Zr-C71(PRP)-C72(PRP)) \le 90^{\circ};$ $0^{\circ} \le \varphi(Zr-C71(PRP)-C72(PRP)-C73(PRP)) \le 180^{\circ};$ $0^{\circ} \le \varphi(C71(PRP)-Zr-C71(PRC)-C72(PRC)) \le 180^{\circ};$ C71

Zr — C71 (PRC) (PRC) C72 C72 C73 (PRP) (PRP)

52nd and after 2nd insertions C-u: ReactID=5, Ea=3.49, dE=-5.78 most favorable pathway r(Zr-C71(PRP)) < 3.8 Å;r(Zr-C72(PRP)) < 3.8 Å;PRC r(C71(PRC)-C72(PRP)) < 5.0 Å; $-90^{\circ} \le \varphi(C71(PRC) - Zr - C71(PRP) - C72(PRP)) \le 90^{\circ};$ (PRC) $-180^{\circ} \le \varphi(\text{Zr}-\text{C71}(\text{PRP})-\text{C72}(\text{PRP})-\text{C73}(\text{PRP})) \le 0^{\circ};$ $-180^{\circ} \leq \varphi(C71(PRP)-Zr-C71(PRC)-C72(PRC)) \leq 0^{\circ}$ (PRP) (6) 2nd and after 2nd insertions C-d: ReactID=6, Ea=5.20, dE=-9.80 (PRP) r(Zr-C71(PRP)) < 3.8 Å;r(Zr-C72(PRP)) < 3.8 Å;r(C71(PRC)-C72(PRP)) < 5.0 Å; $-90^{\circ} \le \varphi(C71(PRC) - Zr - C71(PRP) - C72(PRP)) \le 90^{\circ};$ (PRC) $-180^{\circ} \le \varphi(\text{Zr}-\text{C71}(\text{PRP})-\text{C72}(\text{PRP})-\text{C73}(\text{PRP})) \le 0^{\circ};$ $0^{\circ} \le \varphi(C71(PRP) - Zr - C71(PRC) - C72(PRC)) \le 180^{\circ}$ (PRP)

(PRP)

Computational Details

All MD calculations were performed by PMEMD in AMBER14. Periodic boundary condition was applied. SHAKE algorithm was used.

RM simulation was performed in NVT ensemble at 300 K. Search MD: 50 ps Configurations were sampled every 0.5 ps (100 snapshots).

To correctly represent the cation–counteranion and cation–propylene interactions, I modified the Lennard-Jones (LJ) parameters based on the QM calculations.

	ε [kcal mol ⁻¹]	<i>r</i> e[Å]		ε [kcal mol ⁻¹]	<i>r</i> e [Å]
$Zr-H(CH_3)$	0.300	2.600	Zr-C(c2)	1.842	2.304
Zr-F	0.500	2.980	Zr-C(c9)	2.276	2.848

LJ Parameters for the Cation–Counteranion and Cation–Propylene Interactions

I executed the RM simulation (System: 1 ion-pair, 120 propylene, and 480 solvent pentane). → Reaction candidates were **never** appeared.

1.4 µs MD Simulation

The associative active site opening (AASO) occurs **only once**.

System: 1 cation, 120 propylene, and 480 solvent pentane

React. Candidate

Cycle	3 ReactID	1 Accepted	A	Only A
Cycle	4 ReactID	5 Accepted	C-u	Only C
Cycle	6 ReactID	5 Accepted	C-u	Only C
Cycle	11 ReactID	5 Accepted	C-u	Only C
Cycle	22 ReactID	4 Accepted	A-d	Only A
Cycle	30 ReactID	3 Accepted	A-u	Only A
Cycle	31 ReactID	3 Accepted	A-u	Only A
Cycle	33 ReactID	4 Accepted	A-d	Only A
Cycle	35 ReactID	4 Accepted	A-d	Only A
Cycle	36 ReactID	5 Accepted	C-u	Only C
Cycle	46 ReactID	4 Accepted	A-d	Only A
Cycle	47 ReactID	3 Accepted	A-u	Only A
	40.0	— <u> </u>	•	
Cycle	48 ReactID	5 Accepted	C-u	Both A and C
Cycle Cycle	48 ReactID 51 ReactID	5 Accepted 6 Accepted	C-u C-d	Both A and C Only C
Cycle Cycle Cycle	48 ReactID 51 ReactID 53 ReactID	5 Accepted 6 Accepted 3 Accepted	C-u C-d A-u	Both A and C Only C Only A
Cycle Cycle Cycle Cycle	48 ReactID 51 ReactID 53 ReactID 60 ReactID	5 Accepted 6 Accepted 3 Accepted 4 Accepted	C-d A-u A-d	Both A and C Only C Only A Only A
Cycle Cycle Cycle Cycle Cycle	48 ReactID 51 ReactID 53 ReactID 60 ReactID 61 ReactID	5 Accepted 6 Accepted 3 Accepted 4 Accepted 5 Accepted	C-u C-d A-u A-d C-u	Both A and C Only C Only A Only A Only C
Cycle Cycle Cycle Cycle Cycle Cycle Cycle	48 ReactID 51 ReactID 53 ReactID 60 ReactID 61 ReactID 63 ReactID	5 Accepted 6 Accepted 3 Accepted 4 Accepted 5 Accepted 5 Accepted	C-u C-d A-u A-d C-u C-u	Both A and C Only C Only A Only A Only C Only C
Cycle Cycle Cycle Cycle Cycle Cycle Cycle	48 ReactID 51 ReactID 53 ReactID 60 ReactID 61 ReactID 63 ReactID 64 ReactID	 5 Accepted 6 Accepted 3 Accepted 4 Accepted 5 Accepted 5 Accepted 6 Accepted 	C-u C-d A-u A-d C-u C-u C-d	Both A and C Only C Only A Only A Only C Only C Only C
Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle	48 ReactID 51 ReactID 53 ReactID 60 ReactID 61 ReactID 63 ReactID 64 ReactID 67 ReactID	 5 Accepted 6 Accepted 3 Accepted 4 Accepted 5 Accepted 5 Accepted 6 Accepted 5 Accepted 5 Accepted 	C-u C-d A-u A-d C-u C-u C-d C-u	Both A and C Only C Only A Only A Only C Only C Only C Only C
Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle	48 ReactID 51 ReactID 53 ReactID 60 ReactID 61 ReactID 63 ReactID 64 ReactID 67 ReactID 77 ReactID	 5 Accepted 6 Accepted 3 Accepted 4 Accepted 5 Accepted 5 Accepted 6 Accepted 5 Accepted 5 Accepted 5 Accepted 5 Accepted 	C-u C-d A-u A-d C-u C-u C-d C-u C-u	Both A and C Only C Only A Only C Only C Only C Only C Only C Only C
Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle	48 ReactID 51 ReactID 53 ReactID 60 ReactID 61 ReactID 63 ReactID 64 ReactID 67 ReactID 77 ReactID 78 ReactID	 5 Accepted 6 Accepted 3 Accepted 4 Accepted 5 Accepted 5 Accepted 6 Accepted 5 Accepted 5 Accepted 5 Accepted 3 Accepted 	C-u A-u A-d C-u C-u C-d C-u C-u A-u	Both A and C Only C Only A Only A Only C Only C Only C Only C Only C Only C Only A
Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle	48 ReactID 51 ReactID 53 ReactID 60 ReactID 61 ReactID 63 ReactID 64 ReactID 67 ReactID 77 ReactID 78 ReactID 79 ReactID	5Accepted6Accepted3Accepted4Accepted5Accepted5Accepted6Accepted5Accepted5Accepted5Accepted5Accepted5Accepted5Accepted5Accepted5Accepted5Accepted5Accepted5Accepted5Accepted	C-u C-d A-u A-d C-u C-u C-d C-u C-u A-u C-u	Both A and C Only C Only A Only C Only C Only C Only C Only C Only C Only A Only C

Either A or C was observed.

 \rightarrow Sampling in Search MD is insufficient.

Cycle 110 ReactID 3 Accepted Only A A-u 118 ReactID 3 Accepted Cvcle A-u Only A 5 Accepted Cycle 121 ReactID C-u Only C Cycle 124 ReactID 5 Accepted C-u Only C Cycle 183 ReactID 3 Accepted Only A A-u Cycle 232 ReactID 3 Accepted Only A A-u Cycle 335 ReactID 4 Accepted A-d Only A Cycle 337 ReactID 4 Accepted A-d Only A Cycle 341 ReactID 4 Accepted Only A A-d Cycle 344 ReactID 5 Accepted C-u Only C Cycle 348 ReactID 3 Accepted Only A A-u Cvcle 349 ReactID 3 Accepted Only A A-u Cycle 354 ReactID 6 Accepted C-d Only C Cycle 355 ReactID 5 Accepted C-u Only C Cvcle 357 ReactID 3 Accepted A-u Only A Cycle 362 ReactID 4 Accepted A-d Only A Cycle 363 ReactID 5 Accepted C-u Only C Cycle 364 ReactID 5 Accepted C-u Only C Cycle 365 ReactID 3 Accepted A-u Only A 367 ReactID 5 Accepted Cvcle C-u Only C Cycle 376 ReactID 4 Accepted A-d Only A Cycle 378 ReactID 6 Accepted C-d Only C Cycle 383 ReactID 3 Accepted A-u Only A 386 ReactID 4 Accepted Cvcle A-d Only A

React. Candidate

Once propylene coordinates to Zr, the π -complex hardly dissociates.

It is preferable that the number of the reaction candidates of A and C are almost same.

To solve this problem, **I optimized the LJ parameter**, ε, of Zr–C(sp²).

Optimization of ε

System:

1 cation (n = 1, 2), (120 - n) propylene, and 480 solvent pentane (n: the number of the inserted propylene)

10 MD simulations for 5 ns were performed (total: 50 ns). The average of the number of the reaction candidates per 1 ns were obtained.

Optimization of ε

n = 1

			Read	ct ID		
		3 (A-u)	4 (A-d)	5 (C-u)	6 (C-d)	
0.33 <i>ɛ</i>	ave.	2.4	4.2	3.3	4.2	\leftarrow Very small
	ratio	0.720	1.287	1.000	1.274	
0.50 <i>ɛ</i>	ave.	43.5	33.5	46.7	41.7	
	ratio	0.932	0.717	1.000	0.894	\leftarrow Balance is better.
0.55 <i>ɛ</i>	ave.	93.4	77.8	105.5	70.0	
	ratio	0.885	0.738	1.000	0.664	
0.60 <i>ɛ</i>	ave.	172.4	133.8	203.8	116.8	
	ratio	0.846	0.657	1.000	0.573	
0.66 <i>ɛ</i>	ave.	269.4	185.5	322.8	173.3	
	ratio	0.835	0.575	1.000	0.537	

ave.: average; 5 (C-u) was set to the reference (1.000). Configurations were sampled every 0.5 ps (2000 snapshots).

Optimization of ε

n = 2

			React ID				
			3 (A-u)	4 (A-d)	5 (C-u)	6 (C-d)	
	0336	ave.	2.0	0.2	2.1	0.6	\leftarrow Very small
	0.556	ratio	0.971	0.087	1.000	0.269	
	0.50c	ave.	21.4	6.9	23.8	7.4	
	0.302	ratio	0.899	0.291	1.000	0.309	\leftarrow Balance is better.
	0 550	ave.	32.8	10.8	42.4	13.0	
	0.556	ratio	0.774	0.255	1.000	0.307	
	0.600	ave.	78.9	28.6	124.1	38.3	
	0.002	ratio	0.636	0.231	1.000	0.309	
(0.665	ave.	185.1	43.8	264.1	39.5	0 50c is a bottor choice
	0.002	ratio	0.701	0.166	1.000	0.149	

ave.: average; 5 (C-u) was set to the reference (1.000). Configurations were sampled every 0.5 ps (2000 snapshots).

System: 1 cation, 120 propylene, and 480 solvent pentane; Search MD: 1 ns

1 ReactID 1 Accepted Cycle Α 4 ReactID 5 Accepted Cycle C-u Cycle 11 ReactID 5 Accepted C-u Cycle 13 ReactID 5 Accepted C-u 17 ReactID 5 Accepted Cycle C-u 18 ReactID 5 Accepted Cycle C-u 21 ReactID 5 Accepted Cycle C-u Cycle 22 ReactID 5 Accepted C-u 23 ReactID 5 Accepted Cycle C-u Cycle 26 ReactID 5 Accepted C-u Cycle 28 ReactID 5 Accepted C-u Cycle 29 ReactID 5 Accepted C-u 31 ReactID 5 Accepted Cycle C-u Cycle 32 ReactID 5 Accepted C-u Cycle 38 ReactID 5 Accepted C-u Cycle 41 ReactID 5 Accepted C-u 42 ReactID 5 Accepted Cycle C-u Cycle 43 ReactID 5 Accepted C-u 48 ReactID 5 Accepted Cycle C-u 55 ReactID 5 Accepted Cycle C-u 56 ReactID 5 Accepted Cycle C-u 61 ReactID 3 Accepted Cycle A-u Cycle 65 ReactID 5 Accepted C-u 67 ReactID 5 Accepted Cycle C-u

Cycle	80 ReactID	6 Accepted	C-d
Cycle	81 ReactID	5 Accepted	C-u
Cycle	82 ReactID	5 Accepted	C-u
Cycle	85 ReactID	5 Accepted	C-u
Cycle	88 ReactID	5 Accepted	C-u
Cycle	91 ReactID	5 Accepted	C-u
Cycle	95 ReactID	3 Accepted	A-u
Cycle	96 ReactID	5 Accepted	C-u
Cycle	98 ReactID	4 Accepted	A-d
Cycle	103 ReactID	4 Accepted	A-d
Cycle	105 ReactID	5 Accepted	C-u
Cycle	108 ReactID	5 Accepted	C-u
Cycle	109 ReactID	5 Accepted	C-u
Cycle	112 ReactID	5 Accepted	C-u
Cycle	115 ReactID	5 Accepted	C-u
Cycle	116 ReactID	3 Accepted	A-u
Cycle	117 ReactID	5 Accepted	C-u
Cycle	119 ReactID	5 Accepted	C-u
Cycle	126 ReactID	5 Accepted	C-u
Cycle	127 ReactID	5 Accepted	C-u
Cycle	132 ReactID	5 Accepted	C-u
Cycle	133 ReactID	6 Accepted	C-d
Cycle	135 ReactID	5 Accepted	C-u
Cycle	137 ReactID	5 Accepted	C-u

Summary and Conclusions

To reproduce the polymerization reaction catalyzed by (1) using RM method

- Reaction conditions were established for RM simulation.
- · LJ parameters, ϵ , was optimized for proper sampling in Search MD.
- RM simulation of without-counteranion system is now in progress.

Perspective

- I will perform RM simulation of **with**-counteranion system.
 - \rightarrow Modification of LJ parameters between cation and counteranion will be needed.