Theoretical analysis of Li ion transport in solid-electrolyte interphase film

Taichi Inagaki 2019 1/17 CREST Workshop

Lithium ion battery and SEI film

Li ion batteries are promising candidates for the energy conversion technology

high energy density, compact size, light-weight body, and long cycle life

Solid-electrolyte interphase (SEI) film

passivation film formed on the anode surface to prevent solvent degradation

Correct understanding of electrochem. processes related to SEI film is needed to achieve innovative high-performance rechargeable batteries

Li ion transport

One of the most critical processes

... charging/discharging process~ Li ion transport btwn electrodes

- Bulk electrolyte
- electrolyte/SEI film
- SEI film
- SEI film/electrode

Resistance:

R(SEI film/electrode) ≥ R(SEI film) >> R(other regions)

Here, we try to computationally estimate the Li ion transport resistance in SEI film.

3

How to estimate resistance?

Conventional approach 1

diffusion coefficient \rightarrow ionic conductivity \rightarrow (specific) resistance

MD simulation $\sigma = q^2 c D / k_{\rm B} T$

Dynamics calc. (ion diffusion) is used for the estimate.

However, Li ions in SEI film are unlikely to diffuse at 300 K.

Blue spheres:

trajectories of Li ions.

Standard deviation: 0.26 ± 0.11 Å

(300 K, 10ns MD, and randomly selected 10 Li ions)

The approach does not work well.

How to estimate resistance?

Conventional approach 2

minimum energy path \rightarrow rate constant \rightarrow diffusion coefficient \rightarrow

DFT calc. TST $D=d^2k$

Static calc. are used for the estimate.

However, Li ion transport path in SEI film is unobvious.

Orange colors: SEI film components Width of SEI film: ~70 Å

The approach also does not work well.

Our strategy to estimate resistance

Using a statistical method, Li ion transport path is determined based on the free energy landscape.

1. Obtain Li ion distribution in SEI film

2. Determine Li ion transport path3. Estimate barrier (rate constant)

Nat. Energy, 1, 16030 (2016)

Method for Li ion distribution

3D-RISM method is the most suitable for the calculation

On the basis of the statistical mechanical theory of liquids, it calculates solvent probability distribution around a solute.

3D-RISM calc. conditions

Solute: electrode & SEI film (including Li ions)

Solvent: electrolyte solution 15 M ethylene carbonate & 1.1 M LiPF₆

- 3D-RISM box: 64 × 64 × 256 Å³
 (buffer size ~ 30 × 30 × 128 [Å])
- ➢ solute total charge: 17.0 e
- electrode charge: zero
- ➤ temperature: 300 K
- closure: Kovalenko-Hirata closure

3D distribution of salt ions

blue: Li⁺ distribution, **purple**: PF_6^- distribution (g(**r**) = 15)

- Solute charge was compensated by RISM solvent (solute = 17 e, N_{Li} = 662.29, N_{PF_6} = 681.30 \Rightarrow total charge: 0.01 e)
- > Solvent Li⁺ (PF_6^-) distributes around oxygens (solute Li⁺).

3D distribution of salt ions

 $g_{Li}(\mathbf{r}) = 3$ **r** in SEI film

blue: Li⁺ distribution, **purple**: PF_6^- distribution (g(**r**) = 15)

- Solute charge was compensated by RISM solvent (solute = 17 e, N_{Li} = 662.29, N_{PF_6} = 681.30 \Rightarrow total charge: 0.01 e)
- > Solvent Li⁺ (PF_6^-) distributes around oxygens (solute Li⁺).
- Solvent Li⁺ distributes also in the SEI film.
 Transport path is expected to exist in the SEI film. 10

Path search method

Li ion distribution is too complicated, so it is difficult to determine the path by chemical intuition.

Machine learning technique was applied.

Q-learning (one of reinforcement learning) was tried.

simple maze (path search)

Qiita webpage (@kznx, 2018/02/10)

Q-learning for Li ion transport

3D space in SEI film was divided into grids ($\Delta = 0.5 \text{ Å}$).

Each grid has PMF value, which guides Li ion migration.

Each grid also has **Q value** which assesses a candidate path. Basically, Li ion moves to a next grid with the smallest Q value. However, initial Q value is not optimized for a desired path.

 \Rightarrow Q value is updated (i.e., trained) by actually creating actions.

Update formula is as follows:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \big[r_{t+1} + \gamma \min_{a} \{ Q(s_{t+1}, a) \} - Q(s_t, a_t) \big]$$

 s_t : state (position) at step t r: reward or penalty a_t : possible action at step t α, γ : parameters (migration to next grid)

Q-learning procedure & conditions

Training process

 \Rightarrow Reasonable Q-table seems to be obtained.

Q-learning production run

Path search was performed with $\varepsilon = 0.5\%$ in ε -greedy.

Can we improve the path ?

Computational point of view

> Are parameters employed reasonable ?

- * Reward at electrode surface
- * Penalty at out of SEI film & at contact with atoms
- * α & γ parameters in the update formula of Q-value

Q-learning result is known to be sensitive to them.

Physical & chemical point of view

- Are all the Li ion in SEI film unrelated to the transport ? If they join that, they should be treated as RISM solvent.
- Does SEI film fluctuation assist the transport ?

If so, more sophisticated method will be needed.

e.g., 3D-RISM/MD and Deep Q Network combination

Summary

- Theoretical investigation on the Li ion transport in the SEI film in Li ion batteries was started.
- A new approach combining the 3D-RISM method with the Q-learning technique was employed.
- SD-RISM calculations gave a Li ion distribution in the SEI film configuration reasonably.
- Q-learning proposed some Li ion transport paths, but inevitable contacts with atoms were observed.
- One of the possible causes is to treat all the Li ions in the SEI film as components of solute molecules. Further investigation is needed.