FEG optimizations using dual－level approach

Carlos BISTAFA

Graduate School of Informatics，Nagoya University，Japan

2nd CREST Workshop FY2018 Nagoya，September 18th， 2018

Today's Talk

Cost-Effective Method for Free-Energy Minimization in Complex Systems with Elaborated Ab Initio Potentials
Carlos Bistafa, ${ }^{\dagger}$ Yukichi Kitamura, ${ }^{\dagger}$ Marilia T. C. Martins-Costa, ${ }^{\dagger}$ Masataka Nagaoka, $*, \downarrow, \S, \| \odot$ and Manuel F. Ruiz-López ${ }^{*, *, \perp}$

Free Energy Gradient (FEG) Method

From a classical simulation, we can obtain the forces acting in each atom of the solute molecule in all the steps. By time-averaging these force values, the force on the Free Energy Surface can be obtained as:

$$
F(q)=-\frac{\partial G(q)}{\partial q}=-\left\langle\frac{\partial V(q)}{\partial q}\right\rangle
$$

where $G(q)$ is the free energy and V is the sum of the solute intramolecular potential energy and the solute-solvent interaction energy at coordinate q.

Advantage: We can optimize atomistically and free-energetically the solute molecule in solution;
Limitation: Gradient calculations are performed in all steps of the QM/MM simulation, so the computational cost can be very demanding.

Sequential-QM/MM ${ }^{\text {a,b }}$ and ASEC-FEG ${ }^{c}$

Dual-Level Method

FEP:

$$
W^{B}(\xi)-W^{A}(\xi)=-k_{B} T\left\langle e^{\frac{-U^{B}(\xi)-U^{A}(\xi)}{k_{B} T}}\right\rangle
$$

In particular: $\quad A_{H L}(q)=A_{L L}(q)-\frac{1}{\beta}\left\langle e^{-\beta \Delta V}\right\rangle$

Advantage
fast method
accurate method
dual-level (fast and accurate)

Limitation: High-Level (HL) and Low-Level (LL) have to generate close enough samplings.
$\overline{\text { Chipot } \& P o h o r i l l e, ~ F r e e ~ E n e r g y ~ C a l c u l a t i o n s, ~ S p r i n g e r ~(2007) ~ c h a p ~} 2$.
Ruiz-López and coworkers., J. Chem. Phys., 133 (2010) 064103

Motivation

Perform high-level FEG calculations without the limitations of mean-field approaches.

In order to achieve this we use a dual-level approach, performing the $\mathrm{QM} / \mathrm{MM}$ simulation and FEG calculations with an inexpensive low-level method, and then correcting the values to a higher level using the dual level approach.

Computational Details

- System: 1 QM water molecule + 592 TIP3P water molecules. (small, interesting and data is available for comparison)
- Two cases were studied

1) B3LYP::HF -> QM/MM simulations performed at the HF/6-31G(d) level, with FEG calculations corrected to B3LYP/6-311++G(d,p). In order to validate our approach, usual $\mathrm{QM} / \mathrm{MM}$ simulation and FEG calculations at the B3LYP/6-311++G(d,p) level were also performed.
2) $\mathrm{QCISD}:: B 3 L Y P ~->~ Q M / M M ~ s i m u l a t i o n s ~ p e r f o r m e d ~ a t ~ t h e ~ B 3 L Y P / ~$ $6-311++G(d)$ level, with FEG calculations corrected to QCISD/aug-cc-pVTZ.

In both cases: NVT, 300K, 40 ps, time-step of 1 fs .

Dual level calculations

Using FEP equations, we can proof that the derivatives of the free energy at $H L$ are related to the LL by:

$$
\frac{\partial G_{H L}(q)}{\partial q}=\left\langle\frac{\partial V_{H L}(q ; s)}{\partial q} w(q ; s)\right\rangle_{L L}
$$

Where w is a weighting factor expressed by:

$$
w(q ; s)=\frac{e^{-\beta \Delta V(q ; s)}}{\left\langle e^{-\beta \Delta V(q ; s)}\right\rangle_{L L}}
$$

We use 10% of the configurations sampled at LL to calculate the values at HL .

Results: "close enough samplings"

Figure 1: Normalized distributions of ΔV sol (left) and w (right) in the two studied cases for the 10% saved configurations (in total, 4000) in the first iteration of the QM/MM MD simulation at LL of each optimization procedure. Δ Vsol is the difference between the HL and LL QM/MM solvation energies of the water molecule in liquid water defined by $\Delta V^{s o l}=\Delta V(q ; s)-\left(E_{H L}^{0}-E_{L L}^{0}\right)$.

Results: "close enough samplings"

- - HF
- B3LYP

Figure 2: Radial distribution functions of a water molecule (QM) in liquid water (MM) from QM/MM simulations at HF (red, dashed) and B3LYP (blue, plain) levels in case study 1, B3LYP::HF, at the initial point of the optimization procedure.

Results: FEG and FEG-FEP comparison

-0- B3LYP::HF (FEG-FEP)
->- B3LYP (FEG)

Figure 3: Convergence of average OH bond length, RMS force, and predicted change in free energy ($\delta \mathrm{G}$) for the water molecule in aqueous solution along the approximate FEG-FEP (red, circles, plain line) and standard FEG (blue, triangles, dashed line) optimization methods in B3LYP::HF case.

Results: Optimized Structure of Water Molecule in Aqueous Solution

Method	Property	Gas	Liquid	$\boldsymbol{\Delta}$
B3LYP/6-311+G(d,p)	doн (\AA)	0.962	0.982	+0.020
FEGa	$\alpha\left({ }^{\circ}\right)$	105.1	105.2	+0.1
	$\mu(\mathrm{D})$	2.16	2.91	+0.75
B3LYP::HF	doн $(\AA \AA)$	0.962	0.982	+0.020
	$\alpha\left({ }^{\circ}\right)$	105.1	105.2	+0.1
	$\mu(\mathrm{D})$	2.16	2.95	+0.79
QCISD::B3LYP	doн (\AA)	0.959	0.979	+0.020
	$\alpha\left({ }^{\circ}\right)$	104.4	105.5	+1.1
	$\mu(\mathrm{D})$	1.86	2.69	+0.83
Experimental values	dон $(\AA \AA)$	$0.957{ }^{\mathrm{b}}$	$0.970 \pm 0.005^{\mathrm{c}}$	+0.013
	$\alpha\left({ }^{\circ}\right)$	104.5^{b}	$\sim 106 \pm 1.7^{\mathrm{c}}$	+1.5
	$\mu(\mathrm{D})$	1.85^{d}	2.6^{a}	+0.75

a Standard FEG optimization;
b Benedict et. al, J. Chem. Phys., 24, 1139 (1956);
c Ichikawa et. al., Mol. Phys., 73, 79 (1991);
d Clough et. al., J. Chem. Phys., 59, 2254 (1973);
e Coulson et. al., Proc. R. Soc. London., Ser. A, 291, 445 (1966).

Conclusions and Perspectives

- Our calculations show that the results obtained using FEG and FEG-FEP are the same;
- FEG-FEP is computationally very efficient. For instance, the QCISD optimization took 20 days, while our estimation is that it would take 1.2 years using the usual FEG approach and same computational resources;
- Our results obtained at QCISD are the most accurate theoretical results for structure and dipole of the water molecule in aqueous solution available so far. They are consistent with previous calculations and with experimental data;
- Perspectives: Extend the equations for the Hessian case, in order to perform transition states optimizations and infrared spectrum calculations (very promising).

Conclusions and Perspectives

Table 1: The Hessian obtained with B3LYP::HF (FEG-FEP) method and with usual FEG method at B3LYP. The difference in the values obtained in both calculations is mild. Values in $\mathrm{kcal} / \mathrm{mol}^{2}{ }^{2}$.

$$
\frac{\partial^{2} G_{H L}}{\partial q_{\alpha i} \partial q_{\beta j}}=\left\langle\frac{\partial^{2} V}{\partial q_{\alpha i} \partial q_{\beta j}} w\right\rangle_{L L}
$$

B3LYP	Ox	Oy	Oz	H1x	H1y	H1z	H2x	H2y	H2z
Ox	108.171								
Oy	-2.892	1501.454							
Oz	1.888	12.302	1049.192						
H1x	-41.541	0.704	-0.948	55.419					
H1y	-0.125	-678.513	380.373	2.317	718.138				
H1z	-0.152	489.880	-472.186	-1.587	-414.751	-41.579			
H2x	-0.305	0.049	3.267	-0.049	-0.213	-677.827	-379.338		
H2y	-0.117	-62.014	-0.002	-489.526	-473.188	0.251	56.840	439.414	
H2z	0.054	59.740	-56.387	-0.441	717.735	36.316	-0.096	407.253	435.127
B3LYP::HF	Ox	Oy	Oz	H1x	H1y	H1z	H2x	H2y	H2z
Ox	106.959								
Oy	-3.185	1515.630							
Oz	-0.348	-2.393	1048.908						
H1x	-43.025	0.787	-0.822	62.187					
H1y	0.173	-676.209	378.459	-0.099	711.517				
H1z	-0.244	487.451	-472.200	-0.520	-404.380	-42.404			
H2x	-0.273	0.148	3.485	-0.036	-0.392	-676.956	-379.000		
H2y	-0.094	-61.853	-0.199	-488.168	-472.276	0.134	55.959	436.734	
H2z	-0.081	61.824	-56.215	0.782	711.808	37.147	0.957	405.847	437.377

