Thur. Jun. 28th

FY2018's 1st, CREST Workshop

Application of the latest Red Moon program to some polymerization systems catalyzed by organometallics towards the realization of chain shuttling polymerization *simulation*

<u>Yuichi Suzuki</u>

- i. The development of RM program aiming a generalized simulation method for complex chemical reaction systems (collaborating with Dr. Takayanagi).
 - ➢ We are planning to make the program available for researchers at universities or companies (under license/copyright).
- ii. The realization of chain shuttling polymerization (CSP) simulation using RM method (collaborating with Dr. Saha and Ms. Misawa).
 - This subject has to be completed by the next (/final) CREST report in the beginning of September.
- iii. The establishment of a methodology to treat diffusion of molecules in addition to chemical reactions.
 - It is important to expand the RM methodology to be able to treat it occurring as a rare event.

- i. The development of RM program aiming a generalized simulation method for complex chemical reaction systems (collaborating with Dr. Takayanagi).
 - ➢ We are planning to make the program available for researchers at universities or companies (under license/copyright).
- ii. The realization of chain shuttling polymerization (CSP) simulation using RM method (collaborating with Dr. Saha and Ms. Misawa).
 - This subject has to be completed by the next (/final) CREST report in the beginning of September.
- iii. The establishment of a methodology to treat diffusion of molecules in addition to chemical reactions.
 - It is important to expand the RM methodology to be able to treat it occurring as a rare event.

Basic computational processes in RM cycle

Modules constructing the present RM program

rm_main.py

The main script for all of the modules to perform RM simulation by successively calling the method "run" in each class of the modules.

rm_read_input.py

The script to read an input file "rm_input.dat" and return the parameter "proc_parms" that includes a set of the parameters for all the processes such as SearchMD, RF, TE, QuenchMD, RelaxMD, MC and Wrap.

amber_mdsolvers.py

The script to write an *mdin* file and execute any kinds of MD calculation such as SearchMD, QuenchMD and RelaxMD.

reaction_finder.py

The script to find molecules, satisfying some reaction conditions written in "rm_input.dat", in the structures obtained by SearchMD.

topology_editor.py

The script to edit a topology file with TopologyEditor using the script file outputted from ReactionFinder.

rm_monte_carlo.py

The script to calculate energy difference between reactant and product states and then undo or redo the update of the whole structure under the Metropolis scheme.

wrap_into_box.py

The script to translate the whole structure under a specified condition and then wrap molecules into the simulation box by using the cpptraj program. 5

- i. The development of RM program aiming a generalized simulation method for complex chemical reaction systems (collaborating with Dr. Takayanagi).
 - ➢ We are planning to make the program available for researchers at universities or companies (under license/copyright).
- ii. The realization of chain shuttling polymerization (CSP) simulation using RM method (collaborating with Dr. Saha and Ms. Misawa).
 - This subject has to be completed by the next (/final) CREST report in the beginning of September.
- iii. The establishment of a methodology to treat diffusion of molecules in addition to chemical reactions.
 - It is important to expand the RM methodology to be able to treat it occurring as a rare event.

Target system: Chain shuttling polymerization (CSP)

Fig. 1. Depiction of the likely chain shuttling mechanism in a single reactor, dual-catalyst approach. **Cat1** (solid circles) and **Cat2** (solid triangles) represent catalysts with high and low monomer selectivity, respectively, whereas the **CSA** (solid squares) facilitates the chain shuttling reaction. …

Arriola, D. J.; Carnahan, E. M.; Hustad, P. D.; Kuhlman, R. L.; Wenzel, T. T. Science 2006, 312, 714–719. 7

Procedure towards the realization of CSP simulation

Hf catalyst system

CSP system with Hf and Zr catalysts

I. CSP simulation in which the ethylene and 1-octene IP occurs on the Hf catalyst, and the ethylene IP occurs on the Zr catalyst, accompanying with chain transfer by ZnEt₂ as CSA.

IP: insertion polymerization CCTP: coordinative chain transfer polymerization CTA: chain transfer agent CSP: chain shuttling polymerization CSA: chain shuttling agent

RM simulations using the latest RM program

Hf catalyst system

CSP system with Hf and Zr catalysts

I. CSP simulation in which the ethylene and 1-octene IP occurs on the Hf catalyst, and the ethylene IP occurs on the Zr catalyst, accompanying with chain transfer by ZnEt₂ as CSA.

IP: insertion polymerization

- CCTP: coordinative chain transfer polymerization
- CTA: chain transfer agent
- CSP: chain shuttling polymerization
- CSA: chain shuttling agent

edit_top_LJ.py

The script to edit topology file in order to consider LJ interactions between specified atoms using TopologyEditor, which is impossible to treat such specified interactions using the modules in amber programs.

This module executes not only TopolgyEditor but also "LJedit.py", made by Dr. Matsumoto, to specify atoms necessary to consider LJ interactions.

Table. the values of LJ parameters

	σ[Å]	ε [kcal/mol]
Zr-C(ethylene)	2.650	5.000
Zr-H(borate)	0.050	2.228
<u>Zr-F(borate)</u>	0.250	2.567

- The ethylene monomers are inserted between the Zr atom and the C atom in polymerization.
- The ethylene monomers become the parts of a polymer chain one by one during RM simulation.

Modification of the modules

rm_main.py

#----- Instances of Processes -----

#------ Run RM simulation ------# start MC/MD cycle from 'init_cycle' to 'total_cycle'

Necessary conditions:

- i. A topology file without LJ modification is kept at any RM cycles.
- ii. LJ modification is executed just before MD processes.
- iii. A topology file without LJ modification is updated for next RM cycle if a trial chemical reaction is accepted. If rejected, the topology file is kept without the update.
- iv. If there is no candidate for chemical reactions, a topology file is kept without LJ modification for next RM cycle.

```
#----- Run RM simulation ------
# start MC/MD cycle from 'init cycle' to 'total cycle'
for cycle in range(init_cycle, total_cycle + 1):
     #----- modified for catpoly -----
     ## topology file without the LJ modification must be used as the input one
     TopWithoutLJ = main parms["PathTop"]
     # run TELJ1
     main parms.update(TEL)1.run(cycle, abspath cycledir, **main parms))
     #------
     # run SearchMD
     main parms.update(SearchMD.run(cycle, abspath cycledir, **main parms))
     # run RF
     main parms.update(RF.run(cycle, abspath cycledir, **main parms))
     # whether one candiate is found at least or not
     if main parms["RFisfound"]:
       TopWithoutLJ_BefTE = TopWithoutLJ # modified for catpoly
        main parms["PathTop"] = TopWithoutL] # modified for catpoly
        # run TF
        main parms.update(TE.run(cycle, abspath cycledir, **main parms))
        #----- modified for catpoly -----
       TopWithoutLJ_AftTE = main_parms["PathTop"]
        # run TELJ2
        main parms.update(TELJ2.run(cycle, abspath cycledir, **main parms))
        #-----
        # run QuenchMD
        main_parms.update(QuenchMD.run(cycle, abspath_cycledir, **main_parms))
        # run RelaxMD
```

main_parms.update(RelaxMD.run(cycle, abspath_cycledir, **main_parms)) # run MC

```
main_parms.update(MC.run(cycle, abspath_cycledir, **main_parms))
#----- modified for catpoly -----
```

```
if main_parms["MCisrejected"]:
```

main_parms["PathTop"] = TopWithoutLJ_BefTE
else:

main_parms["PathTop"] = TopWithoutLJ_AftTE

```
else:
```

main_parms["PathTop"] = TopWithoutLJ # modified for catpoly

```
# run Wrap
```

main_parms.update(Wrap.run(cycle, abspath_cycledir, **main_parms))

RM simulations using the latest RM program

Hf catalyst system

CSP system with Hf and Zr catalysts

I. CSP simulation in which the ethylene and 1-octene IP occurs on the Hf catalyst, and the ethylene IP occurs on the Zr catalyst, accompanying with chain transfer by ZnEt₂ as CSA.

IP: insertion polymerization

CCTP: coordinative chain transfer polymerization

CTA: chain transfer agent

CSP: chain shuttling polymerization

CSA: chain shuttling agent

CCTP system with Hf-cat: rm_input.dat

rm_input.dat

Red Moon main parameters %RM

MainDir = ./Sample1, InpTop = system_mod.top, InpCrd = prerun2.restrt, InitCycle = 1, TotalCycle = 500, Temp= 400, Ensemble = NVT, RunMDCmd = pmemd.pbb.MPI,

Search MD parameters %SearchMD

MDstep = 25000, MDdt = 0.002, MDntpr=1000, MDntwx=1000, MDntwr=1000, MDnmropt=1, MDdisang=cctp_anion.RST,

Relax MD parameters

%RelaxMD MDstep = 5000, MDdt = 0.002, MDntpr=1000, MDntwx=1000, MDnmropt=1, MDdisang=cctp_anion.RST,

Quenching MD parameters

%QuenchMD MDntwr=500, MDnmropt=1, MDdisang=cctp_anion.RST,

Reaction Finder (RF) parameters

%RF RFinpfile = ./rf_input.dat, RFpath = /home/takayana/scripts/ReactionFinder/ReactionFinder, RFcrdstep="1 25 1"

Topology Editor (TE) parameters %TE

TEpath = /home/takayana/scripts/TopologyEditor/TopologyEditor, TEff = [/home/takayana/AMBER/amber14/dat/leap/parm/gaff.dat] TEffmod = [./parms/hfc_all.frcmod, ./parms/znetme_all.frcmod, ./parms/frcmod.B, ./parms/frcmod.CB, ./parms/frcmod.PH2, ./parms/frcmod.PH3, ./parms/frcmod.Ph1, ./parms/frcmod.borate]

Monte Carlo parameters %MC MCregion = whole,

Wrap parameters
%Wrap
Centering = @Hf, Imaging = All,
PtrajBinary = cpptraj,

Some values of the above parameters are a little different from those specified by Dr. Matsumoto. This is because of the demonstration of the RM simulation using the present program.

CCTP system with Hf-cat: rf_input.dat

rf_input.dat

```
#-----monomer insertion------
#Reaction 1 (HFB-MIC + EXX ---> HFB-ERC-MTX)
ReactID=1 Ea=0.0 dE=-17.3
"COND = distance(:HFB@Hf; :EXX@C1)<3.8
    && distance(:HFB@Hf; :EXX@C2)<3.8
    && dihedral(:MIC@C1; :HFB@Hf; :EXX@C1; :EXX@C2)
    =[-60.0,60.0]
    && angle(:HFB@N; :HFB@Hf; :EXX@C1)>100.0
    && distance(:HFB@Hf; :MIC@C1)<2.4"
"ACTION =
  createBond :HFB@Hf :EXX@C1;
  createBond :EXX@C2 :MIC@C1;
  deleteBond :HFB@Hf :MIC@C1;
  ModifyResByPrepin : EXX ./parms/erc.prepin;
  ModifyResByPrepin :MIC ./parms/mtx.prepin"
#Reaction 2 (HFB-EIC + EXX ---> HFB-ERC-ETX)
ReactID=2 Ea=0.0 dE=-17.3
"COND = distance(:HFB@Hf; :EXX@C1)<3.8
    && distance(:HFB@Hf; :EXX@C2)<3.8
    &&
dihedral(:EIC@C1; :HFB@Hf; :EXX@C1; :EXX@C2)=[-
60.0,60.0]
```

#-----polymer exchange------#Reaction 4 (HFB-MIC + ZN-EIZ ---> HFB-EIC + ZN-MIZ) ReactID=4 Ea=0.01 dE=0.0 "COND = distance(:HFB@Hf; :EIZ@C1)<2.8 && distance(:MIC@C1; :ZN@Zn)<2.8 && distance(:HFB@Hf; :MIC@C1)<2.4 && distance(:HFB@Hf; :HFB@N)<5.0 && distance(:ZN@Zn; :EIZ@C1)<2.4" "ACTION = createBond :HFB@Hf :EIZ@C1; createBond :ZN@Zn :MIC@C1; deleteBond :HFB@Hf :MIC@C1;

deleteBond :ZN@Zn :EIZ@C1; ModifyResByPrepin :MIC ./parms/miz.prepin; ModifyResByPrepin :EIZ ./parms/eic.prepin"

#Reaction 9 (HFB-ERC-P1 + ZN-ERZ-P2 ---> HFB-ERC-P2 + ZN-ERZ-P1)

ReactID=9 Ea=0.01 dE=0.0 "COND = distance(:HFB@Hf; :ERZ@C1)<2.8 && distance(:ERC@C1; :ZN@Zn)<2.8 && distance(:HFB@Hf; :ERC@C1)<2.4

There are the 9 patterns in the current format to treat all the chemical reactions that occur in this CCTP system.

```
createBond :EXX@C2 :EIC@C1;
deleteBond :HFB@Hf :EIC@C1;
ModifyResByPrepin :EXX ./parms/erc.prepin;
ModifyResByPrepin :EIC ./parms/etx.prepin"
```

createBond :ZN@Zn :ERC@C1; deleteBond :HFB@Hf :ERC@C1; deleteBond :ZN@Zn :ERZ@C1; deleteBond :ZN@Zn :ERZ@C1; ModifyResByPrepin :ERC ./parms/erz.prepin; ModifyResByPrepin :ERZ ./parms/erc.prepin"

CCTP system with Hf-cat: Computational details

- Molecules: 1 ion pair of Hf-cat⁺ and Borate⁻, 120 ethylene and 480 heptane, and 5 ZnEt₂
- Force field : GAFF and some fitted parameters
- Atomic charge: RESP (QM)
- Calculation level of theory: M062X/LANL2DZ (for Hf atom), 6-31G(d,p) (for other atoms)
- ◆ Temperature: 400K
- Search NVT-MD: 50 ps
- Relax NVT-MD: 10 ps
- ◆ Total number of RM cycle: 500
- The number of sampling : 1
- ◆ Box size: 54.76Å × 54.76Å × 54.76Å

CCTP system with Hf-cat: Simulation results

rm_mc_output.dat

Cycle	1 ReactID	1 Epro = 108	65.9472	Erea =	11007.	6866	dE =	-17.3000	dEmc =	-159. 0394	Accepted
Cycle	7 ReactID	3 Epro = 109	05.6990) Erea =	10986.	6303	dE =	-17.3000	dEmc =	-98. 2313	Accepted
Cycle	11 ReactID	3 Epro = 108	94. 5511	Erea =	10923.	4577	dE =	-17.3000	dEmc =	-46. 2066	Accepted
Cycle	14 ReactID	3 Epro = 109	48.6890) Erea =	11035.	2433	dE =	-17.3000	dEmc =	-103. 8543	Accepted
Cycle	17 ReactID	3 Epro = 108	20. 9367	Erea =	10900.	8651	dE =	-17.3000	dEmc =	-97. 2284	Accepted
Cycle	20 ReactID	3 Epro = 108	72. 0101	Erea =	10936.	4119	dE =	-17.3000	dEmc =	-81. 7018	Accepted
Cycle	25 ReactID	3 Epro = 108	37.6673	Erea =	10934.	5597	dE =	-17.3000	dEmc =	-114. 1924	Accepted
Cycle	34 ReactID	3 Epro = 107	74. 4072	Erea =	10894.	5649	dE =	-17.3000	dEmc =	-137. 4577	Accepted
Cycle	41 ReactID	3 Epro = 109	23. 9239	Erea =	11039.	1382	dE =	-17.3000	dEmc =	-132. 5143	Accepted
Cycle	46 ReactID	3 Epro = 108	88. 3781	Erea =	11007.	7719	dE =	-17.3000	dEmc =	-136. 6938	Accepted
Cycle	47 ReactID	3 Epro = 109	19. 2277	Erea =	10964.	7201	dE =	-17.3000	dEmc =	-62. 7924	Accepted
Cycle	50 ReactID	3 Epro = 109	17. 2662	Erea =	10928.	2433	dE =	-17.3000	dEmc =	-28. 2771	Accepted
•••											
Cycle	360 ReactID	3 Epro = 107	18.8040) Erea =	10772.	2091	dE =	-17.3000	dEmc =	-70. 7051	Accepted
Cycle	367 ReactID	3 Epro = 106	48.8613	Erea =	10878.	8159	dE =	-17.3000	dEmc =	-247. 2546	Accepted
Cycle	381 ReactID	3 Epro = 107	72. 4085	Erea =	10830.	3295	dE =	-17.3000	dEmc =	-75. 2210	Accepted
Cycle	383 ReactID	3 Epro = 106	03. 7701	Erea =	10811.	0287	dE =	-17.3000	dEmc =	-224. 5586	Accepted
Cycle	396 ReactID	3 Epro = 107	51. 4104	Erea =	10818.	2428	dE =	-17. 3000	dEmc =	-84. 1324	Accepted
Cycle	412 ReactID	3 Epro = 107	30. 1118	Erea =	10766.	5694	dE =	-17.3000	dEmc =	-53. 7576	Accepted
Cycle	417 ReactID	3 Epro = 107	98. 5455	Erea =	10790.	0089	dE =	-17. 3000	dEmc =	-8.7634	Accepted
Cycle	419 ReactID	3 Epro = 107	09.3319	Erea =	10755.	7178	dE =	-17. 3000	dEmc =	-63. 6859	Accepted
Cycle	426 ReactID	7 Epro = 107	14. 0012	Erea =	10752.	2005	dE =	0.0000	dEmc =	-38. 1993	Accepted
Cvcle	427 ReactID	8 Epro = 107	08.3906	Erea =	10767.	5850	dE =	0,0000	dEmc =	-59, 1944	Accepted

- The ethylene insertion on the active site of the Hf-cat (ReacID 1 and 3) occurred 62 times at the RM cycles, which resulted in producing one polymer with 62 monomeric units.
- □ The bond exchange (ReacID 7) occurred at the 426th RM cycle to create two new chemical bonds between Hf-cat and ZnEt₂, and then that (ReacID 8) occurred again at the 427th RM cycle. As a result, it did not result in completing the chain transfer reaction.

The present RM program could succeed in simulating the CCTP with the Hf-cat.

RM simulations using the latest RM program

Hf catalyst system

CSP system with Hf and Zr catalysts

I. CSP simulation in which the ethylene and 1-octene IP occurs on the Hf catalyst, and the ethylene IP occurs on the Zr catalyst, accompanying with chain transfer by ZnEt₂ as CSA.

IP: insertion polymerization

- CCTP: coordinative chain transfer polymerization
- CTA: chain transfer agent
- CSP: chain shuttling polymerization
- CSA: chain shuttling agent

IP system with Zr-cat: rm_input.dat

rm_input.dat

Red Moon main parameters %RM

MainDir = ./Sample1, InpTop = ./top_crd/IP_Eth_Hep.prmtop, InpCrd = ./top_crd/zrpoly_ip_inp.crd, InitCycle = 1, TotalCycle = 500, Temp= 400, Ensemble = NVT, RunMDCmd = pmemd.pbb.MPI,

Search MD parameters

%SearchMD MDstep = 25000, MDdt = 0.002, MDntpr=1000, MDntwx=1000, MDntwr=1000, MDig = -1,

```
# Relax MD parameters
%RelaxMD
MDstep = 5000, MDdt = 0.002,
MDntpr=1000, MDntwx=1000,
MDig = -1,
```

```
# Quenching MD parameters
%QuenchMD
MDstep = 10000,
MDntwx=100,
MDig = -1,
```

Reaction Finder (RF) parameters
%RF
RFinpfile = ./rf_input.dat,
RFpath = /home/takayana/scripts/ReactionFinder/ReactionFinder,
RFcrdstep="1 25 1"

Topology Editor (TE) parameters %TE

TEpath = /home/takayana/scripts/TopologyEditor/TopologyEditor.test, TEff = [./parms/gaff.dat] TEffmod = [./parms/all.frcmod]

Monte Carlo parameters %MC MCregion = whole,

Wrap parameters
%Wrap
Centering = @Zr, Imaging = All,
PtrajBinary = cpptraj,

The values of the above parameters are specified properly enough to demonstrate the IP simulation for the Zr-cat system.

IP system with Zr-cat: rf_input.dat

rf_input.dat

```
#-----monomer insertion------
#Reaction 1 (FIZ-MIC + ETH ---> FIZ-ERC-MTX)
ReactID=1 Ea=8.34 dE=-26.28
"COND = distance(:FIZ@Zr; :ETH@C1)<4.5
    && distance(:MIC@Ck4; :ETH@C4)<4.5"
"ACTION =
  createBond :FIZ@Zr :ETH@C1;
  createBond :MIC@Ck4 :ETH@C4;
  deleteBond :FIZ@Zr :MIC@Ck4;
  ModifyResByMol2 :MIC ./parms/MTX.mol2;
  ModifyResByMol2 :ETH ./parms/ERC.mol2"
#Reaction 2 (FIZ-ERC-MTX + ETH ---> FIZ-ERC-EMX-MTX)
ReactID=2 Ea=8.34 dE=-26.28
"COND = distance(:FIZ@Zr; :ETH@C1)<4.5
    && distance(:ERC@C1; :ETH@C4)<4.5"
"ACTION =
  createBond :FIZ@Zr :ETH@C1;
  createBond :ERC@C1 :ETH@C4;
  deleteBond :FIZ@Zr :ERC@C1;
  ModifyResByMol2 :ETH ./parms/ERC.mol2;
  ModifyResByMol2 : ERC ./parms/EMX.mol2"
```


Figure. the technical approach to realize the IP reaction in the RM framework (made by Dr. Saha).

IP system with Zr-cat: Computational details

- Molecules: 1 ion pair of Zr-cat⁺ and Borate⁻, 120 ethylene and 480 heptane
- Force field : GAFF and some fitted parameters
- ♦ Atomic charge: RESP (QM)
- Calculation level of theory: M06/LANL2DZ (for Zr atom), 6-31G(d,p) (for other atoms)
- ◆ Temperature: 400K
- Search NVT-MD: 50 ps
- ◆ Relax NVT-MD: 10 ps
- ◆ Total number of RM cycle: 500
- The number of sampling : 1
- ◆ Box size: 55.03Å× 55.03Å × 55.03Å

IP system with Zr-cat: Simulation results

rm_mc_output.dat

Cycle	47 ReactID	1 Epro = 12894.5743	Erea = 12960.	7373 dE =	-26. 2800 0	dEmc =	-92. 4430	Accepted
Cycle	64 ReactID	2 Epro = 12920.6637	Erea = 12999.	6238 dE =	-26. 2800 0	dEmc =	-105. 2401	Accepted
Cycle	85 ReactID	2 Epro = 12869.0555	Erea = 12893.	2644 dE =	-26. 2800 0	dEmc =	-50. 4889	Accepted
Cycle	88 ReactID	2 Epro = 12927.2813	Erea = 12900.	7300 dE =	-26. 2800 0	dEmc =	0. 2713	Accepted
Cycle	90 ReactID	2 Epro = 12822.0206	Erea = 12965.	1022 dE =	-26. 2800 0	dEmc =	-169. 3616	Accepted
Cycle	104 ReactID	2 Epro = 12864.1020	Erea = 12931.	4927 dE =	-26. 2800 0	dEmc =	-93. 6707	Accepted
Cycle	141 ReactID	2 Epro = 12889.4911	Erea = 12868.	5797 dE =	-26. 2800 0	dEmc =	-5.3686	Accepted
Cycle	142 ReactID	2 Epro = 12729.1087	Erea = 12880.	5267 dE =	-26. 2800 0	dEmc =	-177. 6980	Accepted
Cycle	145 ReactID	2 Epro = 12814.3207	Erea = 12862.2	2398 dE =	-26. 2800 0	dEmc =	-74. 1991	Accepted
Cycle	159 ReactID	2 Epro = 12808.0030	Erea = 12877.4	4100 dE =	-26.2800	dEmc =	-95. 6870	Accepted
Cycle	313 ReactID	2 Epro = 12644.1561	Erea = 12645.2	2058 dE =	-26. 2800 0	dEmc =	-27. 3297	Accepted
Cycle	314 ReactID	2 Epro = 12555.3323	Erea = 12736.	1453 dE =	-26. 2800 0	dEmc =	-207.0930	Accepted
Cycle	315 ReactID	2 Epro = 12596.0255	Erea = 12697.	5641 dE =	-26. 2800 0	dEmc =	-127.8186	Accepted
Cycle	357 ReactID	2 Epro = 12691.6608	Erea = 12828.	7741 dE =	-26. 2800 0	dEmc =	-163. 3933	Accepted
Cycle	361 ReactID	2 Epro = 12473.6483	Erea = 12828.	7450 dE =	-26. 2800 0	dEmc =	-381.3767	Accepted
Cycle	451 ReactID	2 Epro = 12594.1280	Erea = 12711.	5105 dE =	-26. 2800 0	dEmc =	-143. 6625	Accepted
Cycle	464 ReactID	2 Epro = 12589.4505	Erea = 12569.	8736 dE =	-26. 2800 0	dEmc =	-6. 7031	Accepted
Cycle	488 ReactID	2 Epro = 12571.4269	Erea = 12676.	9771 dE =	-26. 2800 0	dEmc =	-131.8302	Accepted
Cycle	497 ReactID	2 Epro = 12598.6380	Erea = 12662.	1221 dE =	-26. 2800 0	dEmc =	-89. 7641	Accepted
Cycle	499 ReactID	2 Epro = 12523.3997	Erea = 12543.	0116 dE =	-26. 2800 0	dEmc =	-45. 8919	Accepted
Cycle	500 ReactID	2 Epro = 12542.4327	Erea = 12575.2	2373 dE =	-26.2800	dEmc =	-59.0846	Accepted

- □ The ethylene insertion on the active site of the Zr-cat (ReacID 1 and 2) occurred 38 times, which resulted in producing one polymer with 38 monomeric units.
- □ In the case of the IP system WIHOUT the anion, the candidate for the first insertion were found under the reaction condition of distance (<4.0). However, in the present case, they were rarely found, even using a bit longer distance (<4.5). This might be because of the steric hindrance of the cation associated with the presence of the anion.</p>

The present RM program could succeed in simulating the IP with the Zr-cat as well as the CCTP with the Hf-cat.

Strategy for the realization of CSP simulation 1/3

- Combine the Hf-cat CCTP system with the Zr-cat CCTP system adding 1-octene monomers, as a CSP whole system.
- All values such as activation energies, formation energies, those of force fields parameters that should be investigated by QM approach will be temporary specified by the values obtained in the previous studies.

One simulation box/CSP whole system

Strategy for the realization of CSP simulation 2/3

Hf catalyst system

- I. Ethylene IP simulation.
- II. CCTP simulation with ethylene as monomer and ZnEt₂ as CTA.
- III. Ethylene and 1-octene IP simulation.
- IV. CCTP simulation with ethylene and 1-octene as monomers, and with $ZnEt_2$ as CTA.

Zr catalyst system

- I. Ethylene IP simulation.
- II. CCTP simulation with ethylene as monomer and ZnEt₂ as CTA.

CSP system with Hf and Zr catalysts

I. CSP simulation in which the ethylene and 1-octene IP occurs on the Hf catalyst, and the ethylene IP occurs on the Zr catalyst, accompanying with chain transfer by ZnEt₂ as CSA.

IP: insertion polymerization CCTP: coordinative chain transfer polymerization

- CTA: chain transfer agent
- CTA: chain transfer agent
- CSP: chain shuttling polymerization
- CSA: chain shuttling agent

The next target simulations using the whole model system of CSP (but assuming chemical reactions only involved in the target system).

Strategy for the realization of CSP simulation 3/3

The number of the reaction pattern becomes over 70 (estimated by Ms. Misawa) in the current format of input file to RF, which is almost impossible to execute RF because of the highly computational cost.
(200 [snapshots] × 3 [distance, bond angle and dihedral angle]

× 70 [patterns] = 42000 [number of calculations] per one RF execution)

- □ There are not some necessary functions in RF, e.g., "||" (or) statement for reaction conditions, and calculation of distances, bond angles and dihedral angles of atoms inbetween molecules with the same name.
- It is necessary to make a new format to write reaction conditions and a program similar to RF.

My research subjects

i. The development of RM program aiming a generalized simulation method for complex chemical reaction systems (collaborating with Dr. Takayanagi).

- i. The development of RM program aiming a generalized simulation method for complex chemical reaction systems (collaborating with Dr. Takayanagi).
 - ➢ We are planning to make the program available for researchers at universities or companies (under license/copyright).
- ii. The realization of chain shuttling polymerization (CSP) simulation using RM method (collaborating with Dr. Saha and Ms. Misawa).
 - This subject has to be completed by the next (/final) CREST report in the beginning of September.
- iii. The establishment of a methodology to treat diffusion of molecules in addition to chemical reactions.
 - It is important to expand the RM methodology to be able to treat it occurring as a rare event.

Necessity of a methodology to treat diffusion

Figure. Schematic representation of CCTP mechanism.

- In the present model system of the CCTP with the Hf-cat, there is only one Hf-cat in the simulation box, which does not result in the polymer exchanges between the different Hf-cats.
- It is impossible to treat the model system including the two catalysts because of the highly computational cost, considering its concentration in the experiments.
- It is necessary to establish a methodology to overcome this issue (that is to treat diffusion of molecules).

A methodology to treat diffusion of molecules 1/4

- Catalyst
- Organic solvent
- Monomer
- 🔨 Polymer

■ Catalyzed polymerization system from "macroscopic" point of view

A state of the system from average (/approximate) point of view (i.e., to regard catalysts distributed homogenously)

■ Occurrences of reactions, diffusion and convection currents

A methodology to treat diffusion of molecules 2/4

> Model a region centering around the catalyst with a simulation box (SB) so that the size of SB would be enough to treat reactions and diffusion of molecules in the target system.

- It is difficult to computationally treat the In the surroundings of the region, the diffusion just occurs without any reactions, and assume that the surroundings can be artificially described by the replicas of the SB.
 - > Assume that the size including the replicas (L each side) is the effectively corresponding size of the model system with the experimental one.

A methodology to treat diffusion of molecules 3/4

- Using the multiple SBs, move a heavy polymer produced in a SB to the other SB (diffusion), and then the polymer continues to grow there.
- Suggestion of a new RM methodology that can treat diffusion in addition to reaction in one simulation.
- Exchange **CTA** with **polymer** between SBs.
- The polymer produced on a catalyst moves with CTA to the other catalyst in the other SB.
 - Possible to realize a more realistic CCTP.

It does not (/is not necessary to) exchange the other molecules such as catalysts, solvents and monomers. This can be realized by defining a SB region enough large to properly treat_9 their diffusion.

A methodology to treat diffusion of molecules 4/4

Reaction:

• Search for atom pairs that satisfy reaction conditions and then select one among them by using the following weight.

$$w^{\operatorname{Reac}_i} = N_{\operatorname{cand}}^{\operatorname{Reac}_i} \exp\left(-\beta\Delta E_{\operatorname{a}}^{\operatorname{Reac}_i}\right)$$

 $N_{\text{cand}}^{\text{React}_i}$: number of candidates for chemical reaction *i* $\Delta E_a^{\text{Reac}_i}$: activation energy of chemical reaction *i*

Diffusion:

• Select one among the possible diffusing species by using the following weight.

$$w^{\text{Diff}_{\text{X}}} = 4\pi dD_{\text{X}}/\text{N}_{\text{A}}V$$

 D_X : diffusion coefficient of component X d: moving distance N_X : number of the component X

When the number of diffusion satisfies the equation $N_{\text{diff}} \times w^{\text{Diff}_X} \approx w^{\text{React}_i}$, the diffusion occurs with equal probability with the reaction.

• The potential energy differences before and after reaction and diffusion are calculated as follows.

$$\Delta E_{rs}^{\text{Reac}} = \left(U_{\text{aft}_\text{reac}}^{\text{SB}_{k}} - U_{\text{bef}_\text{reac}}^{\text{SB}_{k}} \right) + \Delta E_{rs}^{\text{Reac}_{i}} = \Delta U_{\text{rs}}^{\text{SB}_{k}} + \Delta E_{rs}^{\text{Reac}_{i}},$$
$$\Delta E_{rs}^{\text{diff}} = \left(U_{\text{aft}_\text{diff}}^{\text{SB}_{i}} + U_{\text{aft}_\text{diff}}^{\text{SB}_{j}} \right) - \left(U_{\text{bef}_\text{diff}}^{\text{SB}_{i}} + U_{\text{bef}_\text{diff}}^{\text{SB}_{j}} \right) = \Delta U_{rs}^{\text{SB}_{i}} + \Delta U_{rs}^{\text{SB}_{j}}$$

• The trial state change is accepted or rejected according to the following transition probability in the Metropolis scheme.

$$W_{r\to s} = \min\{1, \exp[-\beta \Delta E_{rs}]\}$$

RM simulation in each SB is executed by one computer, thus the computational cost will be the same with that of the usual RM simulation! !

Towards the realization of CSP simulation

□ Make a new format for reaction conditions and a program similar to RF.

- Develop a new format for reaction conditions to decrease the reaction patterns possible to calculate.
- Make a program similar to RF in order to read the new format and to write an output file used for an input file to TE.
- Make the program possible to calculate distances, bond angles and dihedral angles with a parallel computing (e.g., OpenMPI).
- Reconsider all of the force field files so as to make a consistency among all the atom types of the model molecules in order to construct the CSP model system.
- Try to execute RM simulations for Hf-cat system III and IV, and Zr-cat system II, using the new format and the new RF-like program.

Thank you for your attention.