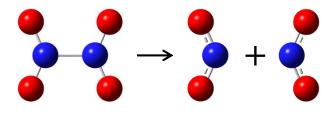
The 2nd, CREST Workshop

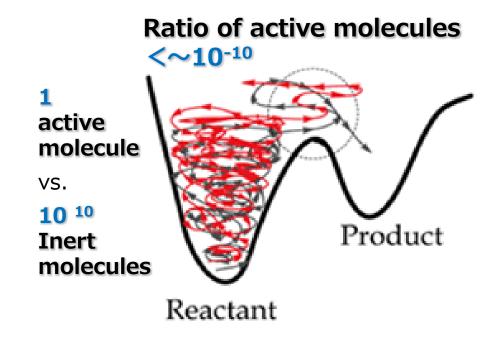
On the Hybrid MC/MD Reaction Method: Application to 2-Chlorobutane Racemization Process in DMF Solution

Yuichi Suzuki


Graduate School of Information Science, Nagoya University

M. Nagaoka, YS, T. Okamoto, N. Takenaka, Chem. Phys. Lett. 583 (2013) 80.

Introduction


Chemical Reaction is Rare Event.

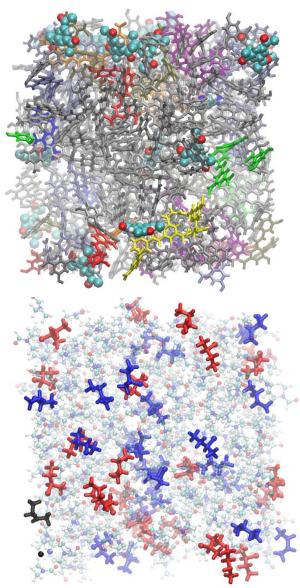
In diffusion in solids and chemical reactions, etc., many systems spend the majority of their time in phase space regions [1].

<u>e.g.</u>

99.9999999% in the initial state of N_2O_4 dissociation reaction at 273 K.

Fig. Schematic representation of N₂O₄ dissociation reaction

[1] e.g., E.A. Carter, G. Ciccotti, J.T.Hynes, R. Kapral, Chem. Phys. Lett. 156 (1989) 472.


How to Treat Complex Chemical Reaction Systems ?

With traditional molecular simulations, it is difficult to treat complex chemical reaction systems such as polymer membrane.

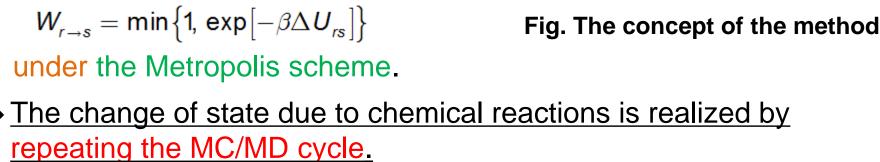
We have developed the hybrid Monte Carlo (MC) / molecular dynamics (MD) reaction method [2].

For demonstration, we applied the method to 2-chlorobutane racemization in DMF solution [2].

[2] M. Nagaoka, **YS**, T. Okamoto, N. Takenaka, Chem. Phys. Lett. 583 (2013) 80.

Method

Hybrid MC/MD Reaction Method


(1) Run MD simulation in the region R until some pair of atoms meets the necessary conditions and select configuration state r.

2 Virtually react it to generate a configuration state s, relaxing the whole system through MD simulation.

(3)Compute ΔU_{rs} (= U_s - U_r) and accept (or reject) the reaction step according to the transition probability

 $W_{r \to s} = \min\{1, \exp[-\beta \Delta U_{rs}]\}$

under the Metropolis scheme.

 $W_{r \to s}$ $W_{s \to t}$ MD | MC | MD | MC | MD Region R Region S Region T $P^{eq}_{r} \sim e^{-\beta U_{r}} P^{eq}_{s} \sim e^{-\beta U_{s}}$ $P^{eq}_{t} \sim e^{-\beta U_{t}}$

B+C

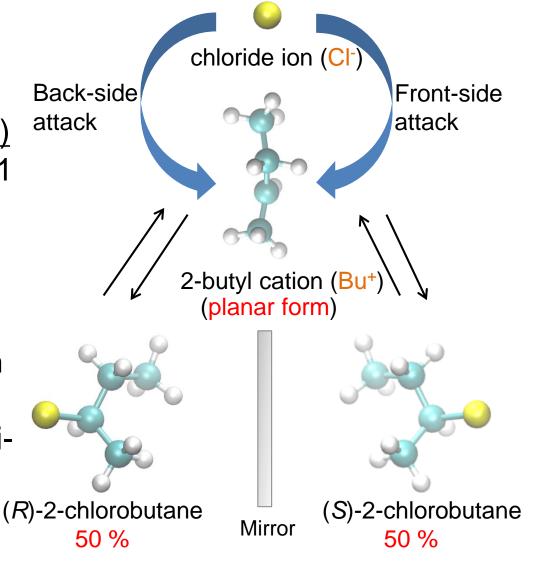
D

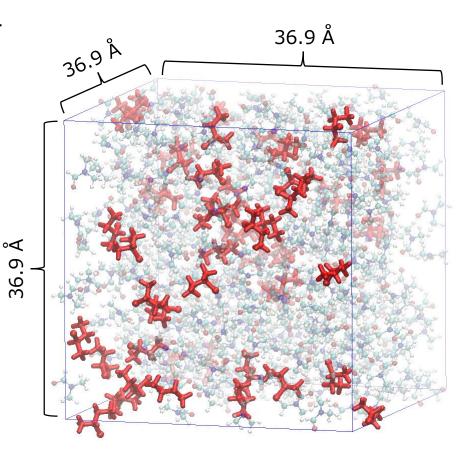
Model System & Computational Details

Model System: 2-Chlorobutane in DMF Solution

■Application to <u>2-chlorobu</u> <u>tane racemization in N,N-</u> <u>dimethylformamide (DMF)</u> <u>solution</u> assuming the S_N1 mechanism.

Realization of a state with $\sim 0\%$ e.e., the expected purity of (*R*)- to (*S*)-enanti-omers of the racemic mixture. (*F*)



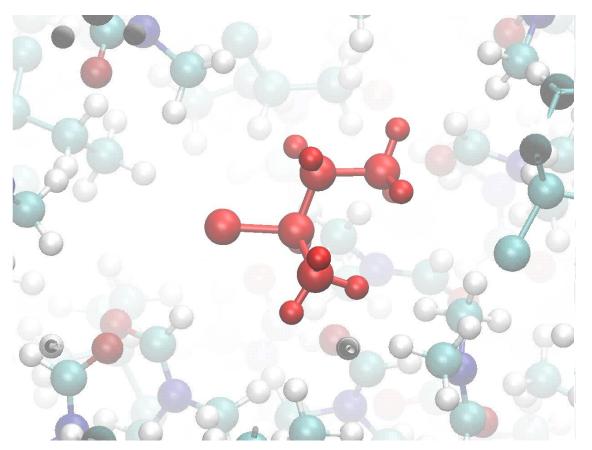

Fig. Racemization (S_N1 mechanism) 8

Computational Details

- ♦ 50 (*R*)-2-chlorobutane (red) and 350 DMF molecules.
- General Amber force field (GAFF), RESP charge.

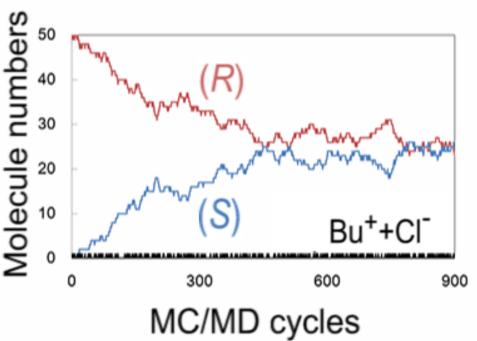
Periodic boundary condition.

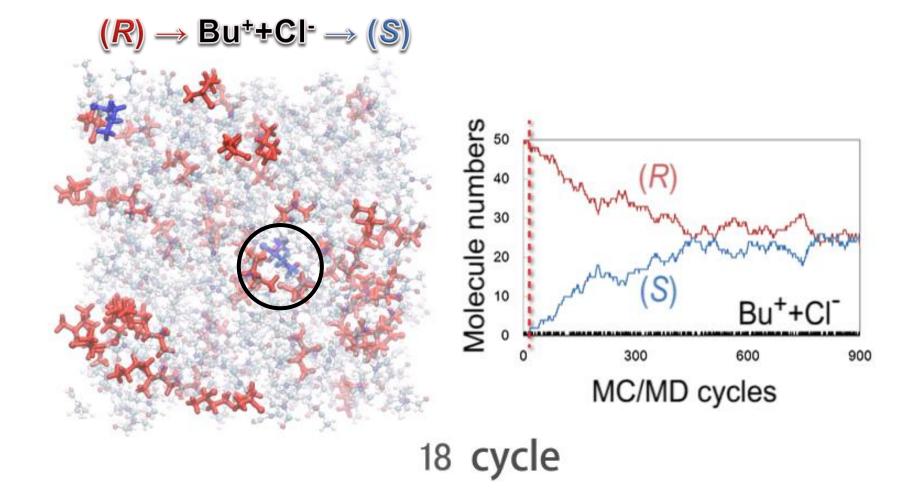
- NPT-MD for 1 ns (313 K and 1 atm) for a relaxation.
- The concentration of (R)-2-chlorobutane molecules was ~1.65 mol/L.
- The NVT-MD (313 K) simulation time in one MC/MD cycle was set to 10 ps.
- ◆ For 900 MC/MD cycles.



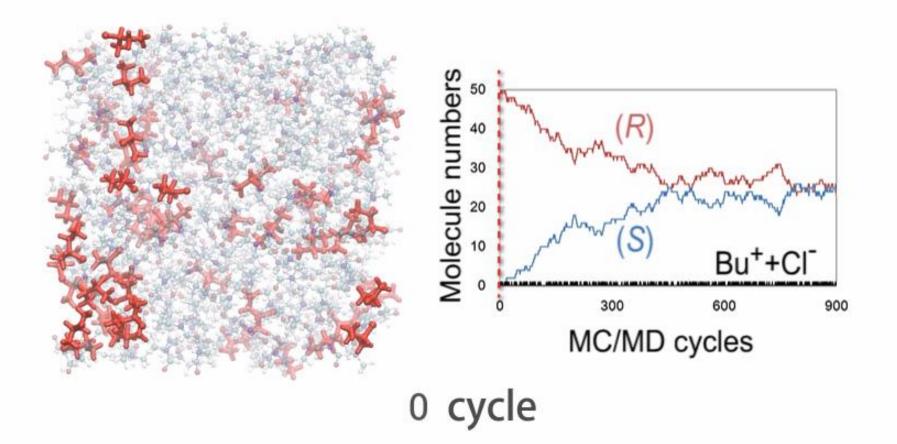
Results & Discussion

Present Hybrid MC/MD Reaction Simulation


- Run MD simulation until some pair of atoms meets the necessary conditions.
- 2 Virtually react it, relaxing the whole system.
- 3 Accept (or reject) the reaction step under the Metropolis scheme.


MD trajectory for a chemical bond of Bu^+ and Cl^- to (*R*)-2-chlorobutane

Realization of Racemization – Numbers –


- Decomposition and formation occurred frequently, and the ratio of (*R*)- to (*S*)-enantiomers changed.
- Their equilibrium numbers, estimated as averages over the last 100 MC/MD cycles, were 25.3 and 24.4, respectively.
- (R)- and (S)-2-chlorobutane exist in equal numbers of ~25.

Realization of Racemization – Structure –

Realization of Racemization – Structure –

Realization of Racemization – Homogeneity –

Molfeen control v5.0

File: ./receemite_CycO.fms Gaptiron: Off 1G pt Comment: Off 12 pt View Auto Rotation: On Speed: 30.0 Rotation Axis: Axis y Trajectory Animation: Off Current Scene no: 0 Mouse Operation: Rotation/Scale Update View Position: ON Script File:

Molfeen Control v5.0

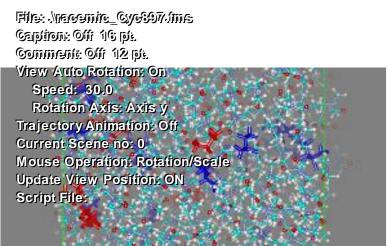
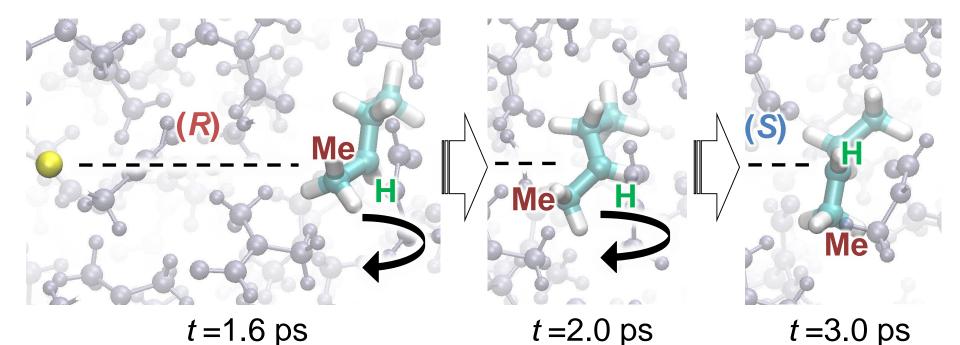



Fig.(a) Initial state (0 MC/MD cycle) Fig.(b) Equilibrium state (897 MC/MD cycles)

□The whole system became equilibrium state, and (*R*)- and (*S*)-enantiomers distribute homogeneously in the solution.

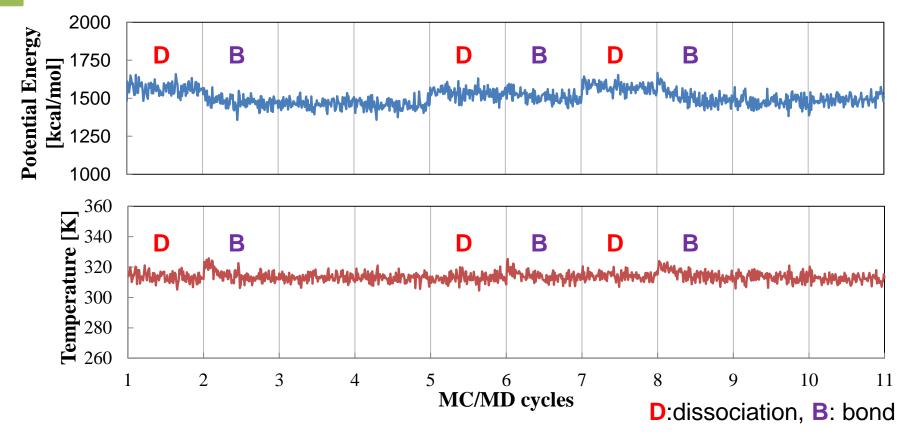
2-chlorobutane racemization has been realized, <u>as the</u> molecular structural change was treated in atomic scale.

An observation: Isomerization with Internal Rotation

□ It was observed that Isomerization of 2-chlorobutane occurs by the internal rotation of both the methyl substituent (Me) and hydrogen (H) of Bu⁺, which is different from the usual S_N 1 mechanism in the text book [3].

 [3] e.g., K.P.C. Vollhardt, N.E. Schore, Organic Chemistry Structure and Function, 6th ed., W. H. Freeman & Co, New York, 2006.

Conclusion


We proposed a hybrid MC/MD reaction method in order to achieve atomistic molecular simulation of complex chemical reaction systems.

□This method was applied to (*R*)-2-chlorobutane molecules in DMF solution system, and worked very well to realize a stereochemical mechanism for the racemization.

It was observed that Isomerization of 2-chlorobutane occurs by both the internal rotation of the methyl substituent and hydrogen of Bu⁺.

Thank you for your attention

Potential Energy and Temperature Change

A sudden increase in potential energy occurred during chemical reaction and dissipated into the surrounding solvent.

The method worked well to attain thermal equilibrium, searching for a lower potential energy state under the constant temperature scheme.

How to recombine with Cl⁻ ?

A Bu⁺ may be recombined with Cl⁻ approaching from the frontor back-side in <u>a normal $S_N 1$ mechanism</u> [4].

However...

- The number of Bu⁺ or Cl⁻ molecule in actual system may be only ~1.19×10⁷ in 1 L. (~1 in 36.9³ × 10²⁶ Å³)
- Diffusion coefficient of Cl⁻ should be low due to slow diffusion of DMF solvent (1.21×10⁻¹³ m²/s).

A Bu⁺ would be recombined with Cl⁻ that dissociated a little before, and therefore the racemization would progress slowly.

 [4] e.g., K.P.C. Vollhardt, N.E. Schore, Organic Chemistry Structure and Function, 6th ed., W. H. Freeman & Co, New York, 2006.

Realization of Racemization – Homogeneity –

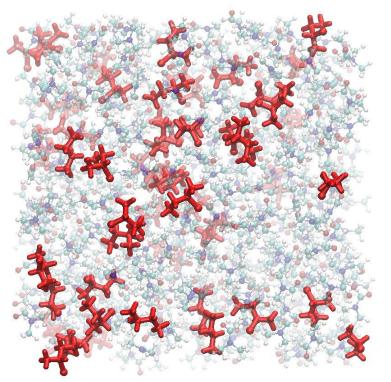


Fig. Initial state (0 MC/MD cycle)

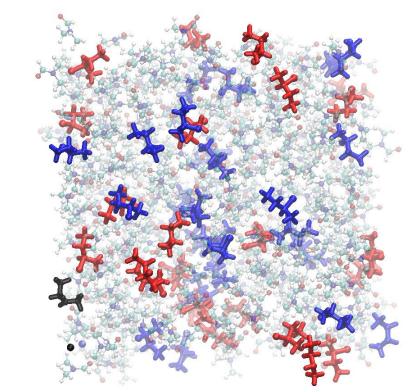


Fig. Equilibrium state (897 MC/MD cycles)

□The whole system became equilibrium state, and (*R*)- and (*S*)-enantiomers distribute homogeneously in the solution.

<u>2-chlorobutane racemization has been realized, as the molecular structural change was treated in atomic scale.</u>