FY2018 2nd CREST Workshop

1

Theoretical analysis of the active site opening mechanism in olefin polymerization reaction by *ansa*-zirconocene catalyst

Dr. Yuichi Tanaka

2018/09/18

Introduction: Polyolefins

- Polyethylene
- · Polypropylene
- Polystyrene
- Polyvinyl chloride

Global market for polypropylene $\sim 5.5 \times 10^7$ t (in 2013)^[1]

Introduction: Stereochemistry of Polypropylene

Tacticity affects the properties of polymer. \rightarrow The control of the tacticity is important.

Introduction: Stereochemistry of Polypropylene

[2] Yoshida, T.; Koga, N.; Morokuma, K. Organometallics **1996**, *15*, 766.
[3] Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev. **2000**, *100*, 1345.

Introduction: Stereochemistry of Polypropylene

 C_2 symmetric *ansa*-zirconocene catalyst, [SiMe₂(Ind)₂ZrMe]⁺[MeB(C₆F₅)₃]⁻ (**1**) [4] 5

[4] Sandhya, K. S.; Koga, N.; Nagaoka, M. Bull. Chem. Soc. Jpn. 2016, 89, 1093.

Introduction: a-Olefin Polymerization Reaction by Catalyst

coordination of the monomer (olefin) to the catalyst
 insertion of the olefin into the metal-alkyl bond
 repetition of step 2

[5] Motta, A.; Fragalà, I. L.; Marks, T. J. J. Chem. Theory Comput. 2013, 9, 3491.
[6] Kaminsky, W. J. Chem. Soc., Dalton Trans. 1998, 1413.

Introduction: a-Olefin Polymerization Reaction by Catalyst

Initiation Process of Polymerization Reaction

In (pyridylamide)Hf(IV) catalytic system [7-9], the active site opening (**ASO**) was observed when the polymerization reaction starts.

\rightarrow How about the catalyst (**1**)?

[7] Matsumoto, K.; Sandhya, K. S.; Takayanagi, M.; Koga, N.; Nagaoka, M. Organometallics 2016, 35, 4099.
[8] Matsumoto, K.; Takayanagi, M.; Sankaran, S. K.; Koga, N.; Nagaoka, M. Organometallics 2018, 37, 343.
[9] Matsumoto, K.; Takayanagi, M.; Suzuki, Y.; Koga, N.; Nagaoka, M. J. Comput. Chem. 2018, accepted.

Purpose

I investigated the microscopic behavior of the catalyst (1) using the replica-exchange MD (REMD) and MD simulations.

Needed Force Field Parameters

- Intramolecular force field parameters of the ansa-zirconocene cation
- Intermolecular force field parameters (Lennard-Jones (LJ) parameters) for the cation-anion interaction
- Intermolecular force field parameters (LJ parameters) for the cation-propylene interaction

Intramolecular Force Field Parameters

	k_r [kcal mol ⁻¹ Å ⁻²]	r ₀ [Å]
zr-c3	175.89	2.25
zr-c5	74.43	2.56
zr-c6	72.89	2.59
si-c3	255.20	1.91
si-c5	266.80	1.93
	k_{θ} [kcal mol ⁻¹ rad ⁻²]	θ ₀ [°]
zr-c3-hc	19.45	114.91
с5-с6-са	131.56	132.75
c3-si-c3	56.49	112.99
si-c3-hc	31.09	111.83
	k_{θ} [kcal mol ⁻¹ rad ⁻²]	θ ₀ [°]
c5-c5-ha	48.5	126.00
c6-c5-ha	48.5	126.00

Intermolecular Force Field Parameters

	ε [kcal mol ⁻¹]	<i>r</i> e[Å]
Zr-H(CH ₃)	0.300	2.600
Zr–F	0.500	2.980

LJ Parameters for the Cation–Anion Interaction

LJ Parameters for the Cation–Propylene Interaction

	ε [kcal mol ⁻¹]	<i>r</i> e[Å]	
Zr-C(c2)	1.842	2.304	
Zr-C(c9)	2.276	2.848	c2
			•

Computational Details

<u>System</u>

(1)with propylene1 ion pair63 propylene monomers135 solvent pentanes

(2)without propylene1 ion pair135 solvent pentanes

Computational Details

REMD Simulation

- 36 replicas with temperatures ranging from 300 to 800 K
- Replica exchange: every 1 ps
- Each REMD simulation was run for 30000 attempts (in total, 30 ns of MD trajectory).
- The trajectory at 300 K was analyzed.

MD Simulation

Equilibration MD NPT, 300 K, 1 ns Production MD NPT, 300 K, 1.4 µs

Results and Discussion

<u>1REMD Simulation</u>

- In the system with propylene, the dissociated structure of the ion pair (regions B and C) was observed.
- Transition from region A to B or C indicates that the ASO occurs.

Results and Discussion

<u>1REMD Simulation</u>

• On the other hand, in the system without propylene, the dissociated structure was not observed.

Results and Discussion

2MD Simulation

CH₃ group coordination

F atom(s) coordination

propylene coordination

- \cdot The ASO and propylene insertion occurs at the same time.
 - \rightarrow The associative ASO (**AASO**) occurs.

(It was observed in (pyridylamide)Hf(IV) catalytic system [7–9].)

- \cdot F atom(s) coordination was not observed in the REMD simulation.
 - \rightarrow It is indicated that propylene coordination is more stable than F atom(s) coordination.

[7] Matsumoto, K.; Sandhya, K. S.; Takayanagi, M.; Koga, N.; Nagaoka, M. *Organometallics* **2016**, *35*, 4099. [8] Matsumoto, K.; Takayanagi, M.; Sankaran, S. K.; Koga, N.; Nagaoka, M. *Organometallics* **2018**, *37*, 343.

Summary and Conclusions

- REMD simulation indicates that C_2 symmetric *ansa*-zirconocene catalyst, [SiMe₂(Ind)₂ZrMe]+[MeB(C₆F₅)₃]⁻ shows the ASO in the system with propylene as well as (pyridylamide)Hf(IV) catalytic system [7–9].
- \cdot MD simulation indicates that the AASO occurs in this catalytic system.

[7] Matsumoto, K.; Sandhya, K. S.; Takayanagi, M.; Koga, N.; Nagaoka, M. Organometallics **2016**, *35*, 4099.
[8] Matsumoto, K.; Takayanagi, M.; Sankaran, S. K.; Koga, N.; Nagaoka, M. Organometallics **2018**, *37*, 343.
[9] Matsumoto, K.; Takayanagi, M.; Suzuki, Y.; Koga, N.; Nagaoka, M. J. Comput. Chem. **2018**, accepted.

Perspective

One of the goals of my research is to reproduce the stereochemistry of polymerization reaction theoretically.

 \rightarrow I'm proceeding with the investigation using the Red Moon (RM) simulation.

 C_2 symmetric *ansa*-zirconocene catalyst, [SiMe₂(Ind)₂ZrMe]⁺[MeB(C₆F₅)₃]⁻ (**1**) [4]