The influence of diverse substituents and their local interactions on linker rotational behaviors in MOFs by computational study

Shanghua Xing 2019. Jan. 17th

The 4th CREST Workshop

microporous mesoporous mater.

Flexible MOFs

□ The flexibility on BDC linkers by different substituents^{1,2}

BDC = 1,4-benzenedicarboxylates, X = substituent

Structural dynamics inside the functionalized MOFs

1

PMMA

□ Radical polymerization of Poly(methyl methacrylate) (PMMA) and its tacticity

Unique Tacticity Control

Tacticity control of MMA radical polymerization inside the functionalized MOFs 3

Research Plan

Experimental results reveal that BDC linker with different substituents (BDC-X) can realize the controllable tacticity of product PMMA polymerization. However, the atomistic mechanism of PMMA tacticity control by different substituents on polymerization is still under discussion.

The First Step

✓ To prepare the force field (FF) parameters for MOFs channel by the introduction of different substituents

The Second Step

✓ To investigate the tacticity dependency of PMMA on the organic linkers composing the MOF by using MD simulation

Model Preparation

Partial optimizations, Method: M06-2X/LANL2DZ (for Zn), 6-31G** (for other atoms)

Non-substituent

Mono-substituent 2,5-disubstituent

 $X = F, CI, Br, NH_2, CH_3, OCH_3$

2,3-disubstituent

Barrierless Rotation of DABCO

❑ The rotational behavior of DABCO linker

Two stable minima with 0° and 60° Very low rotational barrier 0.18 kcal/mol at 30°

DABCO model d^{DABCO} d^{DABCO} d^{TMA} d^{TMA} $d^{$

 ΔE is the relative energy between 0 and 60°

All the calculations were performed by fixed four caps of d^{TMA} with 0°, 30° and 60° $_{6}$

Substituent-dependent Planarity

The equilibrium d^{Linker} in the most stable conformations for TMA model system

Finding in halogen substituent (-F, -Cl, -Br)

- ✓ F models are planar ($d^{Linker} = 0^{\circ}$) structures, but CI and Br models are nonplanar.
- ✓ The d^{Linker} angle increase in the order of F < CI < Br.

Finding in bulky substituents (-CH₃, -NH₂, -OCH₃)

- \checkmark CH₃ models are the nonplanar structures, NH₂ models prefer the planar structures.
- ✓ OCH₃ models with mono- and 2,5-disubstituents are planar structures, but that with 2,3-disubstituent is nonplanar structure.

Diverse Rotational Barriers

The diverse rotational barriers at 90° (left) and 0° (right) in the most stable conformations.

Finding in barriers at 90°

- ✓ The barriers in halogen substituent decrease in the order of F > CI > Br.
- \checkmark NH₂ substituents have the highest barrier.
- ✓ The barriers for OCH₃ models are higher than CI, Br and CH₃ models.

Finding in barriers at 0°

 \checkmark the barriers in 2,3-di are higher than 2,5-disubstituent.

TMA Rotational Effect

The most stable conformation considerably depends on the d^{TMA}

• Example in 2,3-disubstituent with F, Cl and Br

The local interaction between the substituents and TMA cap is existed

Finding 1: F models are the planar structures, but Cl and Br models prefer the nonplanar

MOF_BDC with TMA cap		d ^{TMA} (deg.)	Equilibrium <i>X</i> -H distance (Å)	d ^{Linker} (deg.)
No substituent		0	2.97	0
F	Mono-	0	2.82	0
	2,5-di	0	2.85	0
	2,3-di	0	2.81	0
Cl	Mono-	60	2.87	0
	2,5-di	30	2.96	33
	2,3-di	30	3.23	43
Br	Mono-	60	2.86	0
	2,5-di	30	3.05	36
	2,3-di	30	3.31	44

The sum of *vdW* radius in GAFF: R(F-H) = 3.14 Å, R(CI-H) = 3.34Å, R(Br-H) = 3.41Å

The equilibrium r(X-H) are shorter than the sum of vdW radius, indicating the presence of vdW repulsion

Finding 2: The d^{Linker} angle increase in the order of F < CI < Br.

MOF_BDC with TMA cap		d ^{TMA} (deg.)	d ^{Linker} (deg.)	ChelpG charge X	ChelpG charge H
No substituent		0	0	0.0959	0.0775
F	Mono-	0	0	-0.1945	0.0781
	2,5-di	0	0	-0.1832	0.0793
	2,3-di	0	0	-0.1500	0.0804
Cl	Mono-	60	0	-0.1641	0.0865
	2,5-di	30	33	-0.1403	0.0885
	2,3-di	30	43	-0.1167	0.0907
Br	Mono-	60	0	-0.1092	0.0871
	2,5-di	30	36	-0.0948	0.0879
	2,3-di	30	44	-0.0800	0.0921

The strength of the electrostatic attraction is in the order of F > CI > Br.

This partially contribute to the stability of the planar conformations of the F-substituents.

Finding 1: CH₃ models prefer the nonplanar, NH₂ models prefer the planar

MOF_BDC with TMA cap		d ^{TMA} (deg.)	Equilibrium X-H distance (Å)	d ^{Linker} (deg.)
No si	ubstituent	0	2.97	0
NH ₂	Mono-	0	2.13	0
	2,5-di	30	2.17	19
	2,3-di	0	2.14	0
CH ₃	Mono-	60	2.35	12
	2,5-di	60	2.31	24
	2,3-di	30	2.90	43

vdW repulsion affect the resulting nonplanar conformation in CH_3 model

Small vdW repulsion result in the planar structures in NH₂ model

The sum of *vdW* radius in GAFF: R(H-H) = 2.77 Å in CH₃, R(H-H) = 1.99 Å in NH₂

Finding 2: OCH₃ models with mono- and 2,5-disubstituents are planar structures, and that with 2,3-disubstituent is nonplanar structure.

MOF_ TI	_BDC with MA cap	d ^{TMA} (deg.)	ΔE (kcal/mol)	Equilibrium X-H distance (Å)	d ^{Linker} (deg.)	ChelpG charge X	ChelpG charge H
	Mono-	0	0.00	2.73	0	-0.3078	0.0799
OCH ₃	2,5-di	0	0.00	2.76	0	-0.2839	0.0826
	2,3-di	60	-1.19	2.80	23	-0.3106	0.0845

The sum of vdW radius in GAFF: R(O-O) = 3.37 Å

Atomistic Mechanism of Rotational Barriers

Finding 1: The barriers in halogen substituent decrease in the order of F > CI > Br.

• Example in 2,5-disubstituent with F, Cl and Br

The increasing vdW repulsion of Br > Cl > F can be reflected by strain of $\theta_{(C-C-X)}$. The θ angles at d^{Linker} = 90° are close to the angle $\theta_{(C-C-H)}$ = 118.57° in non-substituted model.

The destabilization of the conformations are in the order of Br > Cl > F, resulting in the observed rotational barrier order F > Cl > Br.

Atomistic Mechanism of Rotational Barriers

Finding 2: the barriers at 0° in 2,3-di are higher than 2,5-disubstituent.

Example in 2,3-disubstituent with Br

The strong strain at $d^{linker} = 0^{\circ}$ resulted in the higher rotational barriers at 0° .

The sum of *vdW* radius in GAFF: R(Br-Br) = 4.04 Å

Finding 3: NH₂ model among the substituent has the highest rotational barriers at 90°.

At $d^{linker} = 0^{\circ}$, NH_2 group interact with the carboxylate via H bonding (NH...O) that must be broken upon the rotation.

Atomistic Mechanism of Rotational Barriers

Finding 4: The barriers for OCH₃ models are higher than CI, Br and CH₃ models.

Example in mono-substituent with CI, Br, CH₃ and OCH₃

Cl, Br and *CH*₃ substituted models at $d^{linker} = 0^{\circ}$ are destabilized by the presence of vdW repulsion,

 OCH_3 -substituted model at $d^{linker} = 0^\circ$ is stabilized due to the presence of H bonding.

Only the angle θ in OCH₃ substituent is close to θ (C-C-H) in non-substituted model (118.57°)

FF Fitting of MOF channel

44 DFT conformations used for MM optimization

4 optimized structures by rotating d^{TMA} at 0, 60, e30 and s30 degree 4 partially relaxed scan structures with 10 degree interval for 10 times by keeping d^{TMA} at 0, 60, e30 and s30 degree.

• Example in 2,3-disubstituent with Br

Implications for PMMA Tacticity Control

- In the planar structure, MMA monomers can approach favorably to radicals continuously along the 1D channels (c-axis)
- ➢ In the nonplanar structure, the expanded pore windows instead of narrow apertures can allow MMA monomers to be polymerized from 3D directions.
- The introduction of bulky substituents (-CH₃, -NH₂, -OCH₃) onto BDC linker may lead to less sterically isotactic conformation in polymerization.

Implications for PMMA Tacticity Control

The introduction of polar substituents has a remarkable impact on charge distribution on BDC linker.

• Example in mono-substituent with F, Cl and Br

°~_	
ca1 ca	 a2X ∾ca3
	ca1
0	

BDC-F		BDC-CI		BDC-Br	
Atom type	Mono-	Atom type	Mono-	Atom type	Mono-
ca1	-0.1468	ca1	-0.0962	ca1	-0.0911
ca2	-0.1125	ca2	-0.0762	ca2	-0.0711
ha	0.1190	ha	0.1070	ha	0.0959
С	0.8748	С	0.8649	С	0.8684
ο	-0.7694	0	-0.7673	0	-0.7690
f	-0.1945	cl	-0.1749	br	-0.1203
ca3	0.3357	ca3	0.1391	ca3	0.0921

The electrostatic interaction between the pore surface and PMMA will induce the preferred localization for polymerization by different substituents.

Research Plan

Experimental results reveal that BDC linker with different substituents (BDC-X) can realize the controllable tacticity of product PMMA polymerization. However, the atomistic mechanism of PMMA tacticity control by different substituents on polymerization is still under discussion.

The First Step

✓ To prepare the force field (FF) parameters for MOFs channel by the introduction of different substituents

The Second Step

- ✓ Investigate radical polymerization process of PMMA in MOF channels
- ✓ To investigate the tacticity dependency of PMMA on the organic linkers composing the MOF by using MD simulation