

Electronic transitions of paranitrophenol in different pH conditions: A review and new perspectives II

Dr. Carlos BISTAFA

1st CREST-WS, June 19th 2017

Electronic Transitions of Molecules in Solution

Previous CREST-WS

Electronic transitions are very sensitive to the environment:

- The interaction with the solvent affects the transition energy;
- The temperature affects the intensity of the band;
- The pH affects the population ratio.

Sequential-QM/MM (S-QM/MM)

S. Canuto & K. Coutinho, *IJQC* 77 (2000)192

Solvent Effects on Molecules and Biomolecules, S. Canuto (ed.), Springer 2008 (chap. 6)

ASEC: Average Solvent Electrostatic Configuration

With a rigid solute, if all the solvent molecules can be taken as point charges, it is possible to overlap the snapshots in one single configuration:

$$\frac{1}{M} \underbrace{\sum_{j=1}^{N} H_{mol}^{(j)}}_{MH_{mol}} + \underbrace{\left(\frac{1}{N} \sum_{j=1}^{N} \sum_{i}^{m} \frac{q_{i}^{(j)}}{\left|r_{i}^{(j)} - r'\right|^{2}} \vec{e}_{R}\right)}_{ASEC} = H_{mol} + ASEC$$

ASEC has all the electrostatic contribution, and also preserves the statistical information of the ensemble and structural information, as HB.

Coutinho et al., Chem. Phys. Lett. 437 (2007) 148

Previous CREST-WS

ASEC-FEG

Previous CREST-WS

1) M. Nagaoka & co-wks., IJQC 70 (1998) 95:

$$F(q) = -\frac{\partial G(q)}{\partial q} = -\left\langle \frac{\partial V(q)}{\partial q} \right\rangle$$

2) M. Aguilar & co-wks., J. Comp. Chem. 25 (2004) 1227:

$$F(q) \cong -\frac{\partial \langle V(q) \rangle}{\partial q}$$

3) H. C. Georg & S. Canuto, JPCB 116 (2012) 11247.

4) C. Bistafa, H.C. Georg & S. Canuto, CTC 1040-1041 (2014) 312

H. C. Georg, K. Coutinho & S. Canuto, Chem. Phys. Lett. 429 (2006) 119

The first time I came to Nagoya... Previous CREST-WS

Table 1: Lowest π - π * transition of pNP and pNP- in aqueous solution, calculated with CASPT2(12,10). Geometries obtained by using different methods. In order to include the solvent effect, the ASEC model was used. Values in eV.

Geometry	рNР	pNP⁻	Shift
GAS	4.51	a	
PCM	4.22	3.37	0.85
FEG	3.99	3.38	0.61/0.71 ^d
EXP	3.90 ^b	3.09 ^{b,c}	0.81

^{a)} In gas phase, the geometry of pNP⁻ has C2v symmetry, whereas the interaction with the solvent breaks this symmetry (C1 group);

- ^{b)} Ando et al., *J. Phys Chem. A* **111** (2007) 7194;
- ^{c)} Abe et al., *Bull. Chem. Soc. Jpn.* **35** (1962) 318.

^{d)} We estimate a correction of -0.1 eV caused by non-electrostatic interaction between pNP⁻ and the solvent.

Table 2: Geometrical changes in the nitro group.Bond distances in Å and bond angle in degree.

	GAS	PCM	FEG
C4-N1	1.46557	1.45000	1.41231
N1-02	1.23075	1.23967	1.25721
N1-03	1.23111	1.23944	1.25442
∠02-N1-O3	124.237	122.838	120.308

Bistafa, Kitamura, Nagaoka & Canuto (to be submitted)

The spectrum in different pH conditions Previous CREST-WS

2. Experimental Section

All the reagents and solvents obtained from Aldrich were purified when necessary. The solutions of pNP, pNA, and their respective anions ([pNP]⁻ and [pNA]⁻) were prepared in suitable solvents. The neutral and anionic species of pNP (p K_a = 7.15) were studied in acidic and basic aqueous solution using 1 M HCl_(aq) and 1 M KOH_(aq), respectively. In the case of pNA (p K_a = 18.9), the deprotonation is achieved in an alkaline ([OH⁻] = 0.011 M) aqueous/dimethyl-sulfoxide (DMSO) solution (99.6% mol of DMSO and 0.4% mol water, pH = 26.2).^{20,21}

Biggs, Trans. Faraday Soc. 50 (1954) 800

From a theoretical point of view, note that, at typical pH condition, a simulation box would include 1 H₃O⁺/30,000 water molecules.

Constant pH Molecular Dynamics

With explicit solvent model, a sudden change of titration site results in a large energy penalty, which leads to an improper MC trial.

To avoid such large energy fluctuations, we introduced the Gaussian filtering scheme and the correction term.

Dr. Yukichi Kitamura

Sub-product: population ratio

Today's contents

In the previous workshop, I presented the theoretical spectra for 3 different pH conditions (pH= 5, 7, 9), obtained at B3LYP level of calculation. I could reproduce qualitatively the main aspects of the experimental data.

Today I will present:

- additional data for other two conditions (pH = 6.6, 7.4);
- their consistency with the Henderson-Hasselbalch equation;
- accurate electronic transitions at CISD level of calculation and the theoretical spectra.

Computational Details: CpH-MD

- Amber simulation: NPT ensemble, 1 atm, 298.15K;
- 1 solute molecule + counter-ion + 854 water molecules;
- solute geometry was determined previously with the Free Energy Gradient* method, at B3LYP/ 6-31G(d,p) level with no symmetry restrictions;
- Every 50ps, 1 trial to change the protonation state is done (1000 trials were done);
- 5 pH conditions were considered: 5, 6.6, 7, 7.4 and
 9.

^{*}N. Okuyama-Yoshida, M. Nagaoka, T. Yamabe, IJQC 70 (1998) 95;

N. Okuyama-Yoshida, K. Kataoka, M. Nagaoka, T. Yamabe, JCP 113 (1998) 3519.

Population ratio

	CpH-MD Simulation		Henderson- Hasselbalch		$pH = pKa + \log\left(\frac{[A^-]}{[AH]}\right)$
рН	pNP	pNP-	pNP	pNP-	$pH - pKa = \log\left(\frac{[A^-]}{[AH]}\right)$
5	99.2	0.8	99.3	0.7	$10^{(pH-pKa)} - ([A^-]) = \varepsilon$
6.6	77.8	22.2	78.0	22.0	$10^{(\mu + \mu)} = \left(\frac{1}{[AH]}\right) = \frac{1}{1 - \varepsilon}$
7	59.2	40.8	58.5	41.5	$10^{(pH-pKa)}(1-\varepsilon) = \varepsilon$
7.4	34.0	66.0	36.0	64.0	$10^{(pH-pKa)} = (1+10^{(pH-pKa)})\varepsilon$
9	1.3	98.7	1.4	98.6	$\therefore \varepsilon = \frac{10^{(pH-pKa)}}{1+10^{(pH-pKa)}}$

The population ration between the species (%) as obtained from CpH-MD simulation and from the Henderson-Hasselbalch

The relation with the spectrum

• The results are consistent with the intensities observed in the experiments.

A route for the theoretical pH-dependent spectrum

- 1) We obtain the electronic transitions in several configurations for both species;
- 2) We convolute the spectrum for both of them;
- 3) By assuming that intensity and population ratio are directly proportional, we multiply the intensity by the population ratio, and normalize with relation to the most intense.

Computational Details (QM/MM)

- <u>Geometry</u>: B3LYP/6-31G(d,p), with the Free Energy Gradient method, no symmetry restrictions;
- <u>MD Simulation</u>: AMBER (1+854), 298 K, NVT, Solute Rigid —> ASEC;
- <u>Electronic Transitions:</u> See next.

Tests with ASEC

	pNP		pNP-	
Method	E(eV)	f	E(eV)	f
CASPT2(12,10)/ANO-L	3.99	0.624*	3.38	0.665*
TD-B3LYP/aug-cc-pVDZ	3.82	0.364	3.47	0.474
TD-CAM-B3LYP/aug-cc-pVDZ	4.06	0.404	3.57	0.525
CIS(D)/aug-cc-pVDZ	4.04	0.541**	3.08	0.823**
Experimental value	3.88 ^a , 3.90 ^b		3.09 ^{a,b}	~ 2x pNP

* The Oscillator Strength is obtained at CASSCF level
 ** The Oscillator Strength is obtained at CIS level

a) Abe, *Bull. Chem. Soc. Jpn.* **35** (1962) 318-322 b) Ando et al, *J. Phys. Chem. A* **111** (2007) 7194

CIS(D) Calculations with explicit water molecules

x 100

One of the configurations used in the CIS(D) calculations. The solute molecule and the 5 nearest water molecules (thick) were treated quantum mechanically, whereas the remaining water molecules (thin) were treated as point charges.

In order to **reduce the computational cost***, we compromised, keeping the **aug-cc-pVDZ** basis set for the **solute**, but using **6-31G** for the **5 water molecules**.

^{*}Bistafa, Modesto-Costa, Canuto, TCA 135 (2016) 129.

CIS(D) Calculations with explicit water molecules

Left) Theoretical spectrum of pNP and pNP- in aqueous solution.

Method used: CIS(D); Basis set: aug-cc-pVDZ (pNP/pNP-), 6-31G (water molecules) Solvent Model: 5 explicit water molecules + half of the solvation box as point charges.

Right) Experimental Spectrum: Ando et al, J. Phys. Chem. A 111 (2007) 7194

$$\pounds(x;x_0,\gamma) = \frac{1}{\pi} \left[\frac{\gamma}{\left(x-x_0\right)^2 + \gamma^2} \right]$$

 γ = half-width at half-maximum (HWHM)

 x_0 = center of the distribution

CIS(D) Spectrum: Different pHs

$$\pounds(x;x_0,\gamma) = \frac{1}{\pi} \left[\frac{\gamma}{\left(x-x_0\right)^2 + \gamma^2} \right]$$

 γ = half-width at half-maximum (HWHM) x_0 = center of the distribution The theoretical electronic spectrum of pNP and pNP- in aqueous solution, considering 5 different pH conditions. To obtain the spectrum, we convoluted a Lorentzian function to the electronic transitions calculated in 100 uncorrelated configurations and multiplied the intensity by the population ratio.

CIS(D) Spectrum: Different pHs

Biggs, Trans. Faraday Soc. 50 (1954) 800

CIS(D) Spectrum: Combining the spectrum of both moieties

By summing and normalizing the previous spectra, it is possible to obtain a spectrum that present all the characteristics observed experimentally, including the **isosbestic point (等 吸収 点)**.

CIS(D) Spectrum: Combining the spectrum of both moieties

Biggs, Trans. Faraday Soc. 50 (1954) 800

Comparison between our theoretical spectrum and the experimental one. All the important characteristics have been successfully reproduced.

- It is possible to obtain theoretically a pH-dependent spectrum;
- This is possible by combining the population ratio from CpH-MD simulations with the electronic transitions obtained from S-QM/MM calculations.
- All the characteristics were well reproduced: peak positions, relative intensities and the isosbestic point.

Apply our methodology in systems with more protonation sites.