Electronic transitions of paranitrophenol in different pH conditions:
A review and new perspectives II

Dr. Carlos BISTAFA

1st CREST-WS, June 19th 2017

Electronic Transitions of Molecules in Solution

Previous CREST-WS

Electronic transitions are very sensitive to the environment:

- The interaction with the solvent affects the transition energy;
- The temperature affects the intensity of the band;
- The pH affects the population ratio.

Fig. 1.-p-nitrophenol in water ; $3.6 \times 10^{-5} \mathrm{~mole} / \mathrm{l}$.

Sequential-QM/MM (S-QM/MM)

S. Canuto \& K. Coutinho, IJQC 77 (2000)192

Solvent Effects on Molecules and Biomolecules, S. Canuto (ed.), Springer 2008 (chap. 6)

ASEC: Average Solvent Electrostatic Configuration

Previous CREST-WS

With a rigid solute, if all the solvent molecules can be taken as point charges, it is possible to overlap the snapshots in one single configuration:
$\frac{1}{X} \sum_{\sum_{\text {NH }}^{N} H_{m o l}^{(j)}}^{N}+\underbrace{\left(\frac{1}{N} \sum_{j=1}^{N} \sum_{i}^{m} \frac{q_{i}^{(j)}}{\left|r_{i}^{(j)}-r^{2}\right|^{2}} \vec{e}_{R}\right)}_{\text {ASEC }}=H_{\text {mol }}+$ ASEC

ASEC has all the electrostatic contribution, and also preserves the statistical information of the ensemble and structural information, as HB.

ASEC-FEG

Previous CREST-WS

1) M. Nagaoka \& co-wks., IJQC 70 (1998) 95:

$$
F(q)=-\frac{\partial G(q)}{\partial q}=-\left\langle\frac{\partial V(q)}{\partial q}\right\rangle
$$

2) M. Aguilar \& co-wks.,
J. Comp. Chem. 25 (2004) 1227:

$$
F(q) \cong-\frac{\partial\langle V(q)\rangle}{\partial q}
$$

3) H. C. Georg \& S. Canuto, JPCB 116 (2012) 11247.
4) C. Bistafa, H.C. Georg \& S. Canuto, CTC 1040-1041 (2014) 312

Geom, Charges (GAS)

H. C. Georg, K. Coutinho \&
S. Canuto,

Chem. Phys. Lett. 429 (2006) 119

The first time I came to Nagoya...

Previous CREST-WS
Table 1: Lowest $\pi-\pi^{*}$ transition of pNP and pNP- in aqueous solution, calculated with CASPT2(12,10). Geometries obtained by using different methods. In order to include the solvent effect, the ASEC model was used. Values in eV .

Geometry	pNP	pNP $^{-}$	Shift
GAS	4.51	$-\mathrm{a}^{\mathrm{a}}$	
PCM	4.22	3.37	0.85
FEG	3.99	3.38	$0.61 / 0.71^{\mathrm{d}}$
EXP	3.90^{b}	$3.09^{\mathrm{b}, \mathrm{c}}$	0.81

${ }^{\text {a) }}$ In gas phase, the geometry of pNP- has C2v symmetry, whereas the interaction with the solvent breaks this symmetry (C1 group);
b) Ando et al., J. Phys Chem. A 111 (2007) 7194;
c) Abe et al., Bull. Chem. Soc. Jpn. 35 (1962) 318.
d) We estimate a correction of -0.1 eV caused by non-electrostatic interaction between pNP- and the solvent.

Table 2: Geometrical changes in the nitro group.
Bond distances in \AA and bond angle in degree.

	GAS	PCM	FEG
C4-N1	1.46557	1.45000	1.41231
N1-O2	1.23075	1.23967	1.25721
N1-O3	1.23111	1.23944	1.25442
CO2-N1-O3	124.237	122.838	120.308

The spectrum in different pH conditions

Previous CREST-WS

2. Experimental Section

All the reagents and solvents obtained from Aldrich were purified when necessary. The solutions of $\mathrm{pNP}, \mathrm{pNA}$, and their respective anions ($[\mathrm{pNP}]^{-}$and $[\mathrm{pNA}]^{-}$) were prepared in suitable solvents. The neutral and anionic species of $\mathrm{pNP}\left(\mathrm{p} K_{\mathrm{a}}\right.$ $=7.15$) were studied in acidic and basic aqueous solution using $1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ and $1 \mathrm{M} \mathrm{KOH}_{(\mathrm{aq})}$, respectively. In the case of pNA $\left(\mathrm{p} K_{\mathrm{a}}=18.9\right)$, the deprotonation is achieved in an alkaline $\left(\left[\mathrm{OH}^{-}\right]=0.011 \mathrm{M}\right)$ aqueous/dimethyl-sulfoxide (DMSO) solution $(99.6 \% \mathrm{~mol}$ of DMSO and $0.4 \% \mathrm{~mol}$ water, $\mathrm{pH}=$ 26.2). ${ }^{20,21}$

Fig. 1.-p-nitrophenol in water ; $3.6 \times 10^{-5} \mathrm{~mole} / \mathrm{l}$.
Biggs, Trans. Faraday Soc. 50 (1954) 800

From a theoretical point of view, note that, at typical pH condition, a simulation box would include 1 $\mathrm{H}_{3} \mathrm{O}+/ 30,000$ water molecules.

Constant pH Molecular Dynamics

Dr. Yukichi Kitamura

With explicit solvent model, a sudden change of titration site results in a large energy penalty, which leads to an improper MC trial.

To avoid such large energy fluctuations, we introduced the Gaussian filtering

Sub-product: population ratio scheme and the correction term.

Today's contents

In the previous workshop, I presented the theoretical spectra for 3 different pH conditions ($\mathrm{pH}=$ $5,7,9$), obtained at B3LYP level of calculation. I could reproduce qualitatively the main aspects of the experimental data.

Today I will present:

- additional data for other two conditions ($\mathrm{pH}=6.6,7.4$);
- their consistency with the Henderson-Hasselbalch equation;
- accurate electronic transitions at CISD level of calculation and the theoretical spectra.

Computational Details: CpH-MD

- Amber simulation: NPT ensemble, 1 atm, 298.15K;
- 1 solute molecule + counter-ion + 854 water molecules;
- solute geometry was determined previously with the Free Energy Gradient* method, at B3LYP/ $6-31 G(d, p)$ level with no symmetry restrictions;
- Every 50ps, 1 trial to change the protonation state is done (1000 trials were done);
- 5 pH conditions were considered: 5, 6.6, 7, 7.4 and 9.

[^0]
Population ratio

	CpH-MD		Henderson- Hassellalch		$p H=p K a+\log \left(\frac{\left[A^{-}\right]}{[A H]}\right)$

The population ration between the species (\%) as obtained from $\mathrm{CpH}-\mathrm{MD}$ simulation and from the Henderson-Hasselbalch

The relation with the spectrum

- The results are consistent with the intensities observed in the experiments.

Acid pH

How can we obtain the spectrum?

A route for the theoretical pH -dependent spectrum

1) We obtain the electronic transitions in several configurations for both species;
2) We convolute the spectrum for both of them;
3) By assuming that intensity and population ratio are directly proportional, we multiply the intensity by the population ratio, and normalize with relation to the most intense.

Computational Details (QM/MM)

- Geometry: B3LYP/6-31G(d,p), with the Free Energy Gradient method, no symmetry restrictions;
- MD Simulation: AMBER (1+854), 298 K, NVT, Solute Rigid \longrightarrow ASEC;
- Electronic Transitions: See next.

Tests with ASEC

	pNP		pNP-	
Method	E(eV)	f	E(eV)	f
CASPT2(12,10)/ANO-L	3.99	0.624^{*}	3.38	0.665^{*}
TD-B3LYP/aug-cc-pVDZ	3.82	0.364	3.47	0.474
TD-CAM-B3LYP/aug-cc-pVDZ	4.06	0.404	3.57	0.525
CIS(D)/aug-cc-pVDZ	4.04	$0.541^{* *}$	3.08	$0.823^{* *}$
Experimental value	$3.88^{\mathrm{a}}, 3.90^{\mathrm{b}}$	-	$3.09^{\mathrm{a}, \mathrm{b}}$	$\sim 2 x \mathrm{pNP}$

* The Oscillator Strength is obtained at CASSCF level ** The Oscillator Strength is obtained at CIS level
a) Abe, Bull. Chem. Soc. Jpn. 35 (1962) 318-322
b) Ando et al, J. Phys. Chem. A 111 (2007) 7194

CIS(D) Calculations with explicit water molecules

x 100

One of the configurations used in the CIS(D) calculations. The solute molecule and the 5 nearest water molecules (thick) were treated quantum mechanically, whereas the remaining water molecules (thin) were treated as point charges.
In order to reduce the computational cost*, we compromised, keeping the aug-cc-pVDZ basis set for the solute, but using 6-31G for the 5 water molecules.
*Bistafa, Modesto-Costa, Canuto, TCA 135 (2016) 129.

CIS(D) Calculations with explicit water molecules

Left) Theoretical spectrum of pNP and pNP- in aqueous solution.
Method used: CIS(D); Basis set: aug-cc-pVDZ (pNP/pNP-), 6-31G (water molecules)
Solvent Model: 5 explicit water molecules + half of the solvation box as point charges.
Right) Experimental Spectrum: Ando et al, J. Phys. Chem. A 111 (2007) 7194

$$
£\left(x ; x_{0}, \gamma\right)=\frac{1}{\pi}\left[\frac{\gamma}{\left(x-x_{0}\right)^{2}+\gamma^{2}}\right]
$$

$$
\begin{aligned}
\gamma & =\text { half-width at half-maximum (HWHM) } \\
x_{0} & =\text { center of the distribution }
\end{aligned}
$$

CIS(D) Spectrum: Different pHs

$$
£\left(x ; x_{0}, \gamma\right)=\frac{1}{\pi}\left[\frac{\gamma}{\left(x-x_{0}\right)^{2}+\gamma^{2}}\right]
$$

$\gamma=$ half-width at half-maximum (HWHM)
$x_{0}=$ center of the distribution

The theoretical electronic spectrum of pNP and pNP- in aqueous solution, considering 5 different pH conditions. To obtain the spectrum, we convoluted a Lorentzian function to the electronic transitions calculated in 100 uncorrelated configurations and multiplied the intensity by the population ratio.

CIS(D) Spectrum: Different pHs

Fig. 1.—p-nitrophenol in water ; $3.6 \times 10^{-5} \mathrm{~mole} / \mathrm{l}$.

Biggs, Trans. Faraday Soc. 50 (1954) 800

CIS(D) Spectrum: Combining the spectrum of both moieties

By summing and normalizing the previous spectra, it is possible to obtain a spectrum that present all the characteristics observed experimentally,

CIS(D) Spectrum: Combining the spectrum of both moieties

Fig. 1.-p-nitrophenol in water ; $3.6 \times 10^{-5} \mathrm{~mole} / \mathrm{l}$.

Biggs, Trans. Faraday Soc. 50 (1954) 800

Comparison between our theoretical spectrum and the experimental one. All the important characteristics have been successfully reproduced.

Conclusions \& Perspectives

- It is possible to obtain theoretically a pH -dependent spectrum;
- This is possible by combining the population ratio from CpH-MD simulations with the electronic transitions obtained from S-QM/MM calculations.
- All the characteristics were well reproduced: peak positions, relative intensities and the isosbestic point.
- Apply our methodology in systems with more protonation sites.

[^0]: *N. Okuyama-Yoshida, M. Nagaoka, T. Yamabe, IJQC 70 (1998) 95;
 N. Okuyama-Yoshida, K. Kataoka, M. Nagaoka, T. Yamabe, JCP 113 (1998) 3519.

