FY2016 The 6th CREST Workshop 2016, Nov. 11

Ab initio prediction of polymer tacticity produced by bulk radical polymerization

Masayoshi Takayanagi Graduate School of Information Science, Nagoya University

Radical polymerization of <u>Poly(methyl methacrylate)</u> (<u>PMMA</u>) and its product polymer tacticity

Tacticity of PMMA

Bulk radical polymerization: meso ratio ~20%

Polymer synthesis in PCP channels

Radical polymerization in PCP channels

Uemura, T. BCSJ, 2011, 84, 1169

Tacticity control by polymerization in PCP channels

Significant control of tacticity > 30%

Uemura, T. et al. *Macromolecules* **2008**, *41*, 87. Uemura, T. et al. *J. Am. Chem. Soc.* **2010**, *132*, 4917.

Ligand rotational flexiblity

Planar structure High rotational barrier ~15 kcal/mol

PCP framework is fixed → First target system

DFT calculation model system B3LYP-D3 or M06-2X/cc-pVDZ

J. Phys. Chem. C 2015, 119, 28789-28799.

Planar or non-planar structure Low rotational barrier 2-10 kcal/mol

PCP framework is flexible

Target PCP [Zn₂(bdc)₂(ted)]

Lattice constant (10.948 Å, 10.948 Å, 9.804 Å)

Use reported flexible force field

1-dimensional channels along c-axis

JACS 2012, 134, 4207

Wide channel along *c*-axis

Narrow aperture along *a*- and *b*-axes

OEG permeation from (001) surface: Movie


```
Temperature 363 K
```

7

H = 14

ತ್ತ<u>್ತಿ</u>ತ್<u>ತಿ</u>

Guest molecule:

oligo(ethylene glycol) (OEG)

J. Phys. Chem. C 2015, 119, 21504–21514.

along *c*-axis

Narrow aperture along *a*- and *b*-axes

Simulate bulk radical polymerization by hybrid MC/MD reaction method

Trajectory of bulk radical polymerization

PMMA produced by hybrid MC/MD simulation

Succeeded in producing PMMA. However...

Tacticity is racemo:meso = <u>~50%:50%</u> Could not reproduce actual value <u>~20%:80%</u>

Reaction condition would not be correct

Simple distance condition can be not appropriate to reproduce the tacticity.

<u>Investigate the reaction barrier</u> by calculating <u>transition state (TS)</u> <u>structures by DFT calculations</u> to produce racemo and meso diads.

DFT calculations to obtain reaction barriers of PMMA elongation reaction

TS to racemo Flip radical plane by 180° rotation of 3-5-9-11 dihedral angle

TS to meso

Starting from the combinations of dihedral angles in the right table, we executed **288** (= $2^5 \times 3^2$) TS optimizations.

Index of the above conformation: 2110-000

Dihedral angle	Initial value (degrees)	Index
φ ₁ (2-3-5- 9)	-180, -60, 60	0, 1, 2
φ ₂ (3-5- <mark>9</mark> -11)	-90, 90	0, 1
φ ₃ (5- <mark>9</mark> -12-16)	-180, -60, 60	0, 1, 2
φ ₄ (9 -12-16-18)	-90, 90	0, 1
ψ ₁ (6-3-4- <mark>8</mark>)	0, 180	0, 1
ψ ₂ (13-9-11- <mark>15</mark>)	0, 180	0, 1
ψ ₃ (19-16-18- <mark>21</mark>)	0, 180	0, 1

Energy distribution of 288 TS conformations to racemo and meso

Most stable conformation to meso 14

Estimate PMMA tacticity from Boltzmann factors

	TS index	E(kcal/mol)	diad	Boltzmann factor	Probability	Accumulated probability
1	0110-100	0.000	r	1.0000	10. 18%	10. 18%
2	0110-000	0.023	r	0.9667	9.84%	20. 01%
3	0101-010	0.529	r	0.4600	4.68%	24. 69%
4	0101-110	0.616	r	0.4052	4.12%	28. 81%
5	2110-000	0.629	r	0.3974	4.04%	32.86%
6	0021-100	0.784	m	0.3165	3.22%	36.08%
7	2021-000	0.918	m	0.2599	2.64%	38. 72%
8	2110-100	1.076	r	0.2063	2.10%	40. 82%
9	2101-100	1.119	r	0.1935	1.97%	42. 79%
10	0100-100	1.253	r	0.1590	1.62%	44. 41%
11	2021-100	1.285	m	0.1519	1.55%	45.95%
12	0110-011	1.382	r	0.1317	1.34%	47. 29%
13	0110-101	1.391	r	0.1299	1.32%	48. 62%
14	0021-000	1.415	m	0.1255	1.28%	49.89%
15	0000-010	1.423	m	0.1240	1.26%	51.15%
30	0100-110	1.717	r	0.0806	0.82%	65.81%
50	2101-001	2.073	r	0.0477	0.49%	77.79%
90	0121-001	2.705	r	0.0189	0.19%	90. 01%
125	0010-101	3.063	m	0.0112	0.11%	95.06%
288	1120-000	6.619	r	0.0001	0.0006%	100.00%

ratio(racemo) = $\frac{\sum_{n \in \text{racemo TS}} \exp\left(\frac{-E_n}{k_B T}\right)}{\sum_{n \in \text{all TS}} \exp\left(\frac{-E_n}{k_B T}\right)}$ $ratio(\text{meso}) = \frac{\sum_{n \in \text{meso TS}} \exp\left(\frac{-E_n}{k_B T}\right)}{\sum_{n \in \text{all TS}} \exp\left(\frac{-E_n}{k_B T}\right)}$

Predicted r:m 73.93%:26.07%

Experimental r:m 78%:22%

Good ab initio prediction of experimental tacticity

at 343 K

Estimate polysthyrene (PS) tacticity

	index	E (kcal /mol)	diad	Boltzmann factor Probability		Accumulated probability
1	0110_1	0.000	r	1.0000	16. 10%	16.10%
2	0111_0	0.307	m	0.6459	10. 40%	26.50%
3	0120_0	0.347	m	0. 6098	9.82%	<mark>36. 32%</mark>
4	0101_1	0. 433	r	0. 5392	8.68%	45.00%
5	0121_0	0.564	m	0. 4475	7.20%	52.20%
6	0021_1	0.763	m	0.3369	5.42%	<mark>57.63%</mark>
7	0000_0	0.837	r	0. 3034	4.89%	62.51%
8	1021_1	0.871	m	0. 2891	4.65%	<mark>67.17%</mark>
9	0000_1	1.078	m	0. 2150	3.46%	70.63%
10	0121_1	1.100	r	0. 2084	3.35%	73.98%
11	1000_1	1.231	m	0.1730	2. 79%	76. 77%
12	2110_1	1.269	r	0.1639	2.64%	79.41%
13	2021_1	1.501	m	0. 1176	1.89%	<mark>81. 30%</mark>
14	2101_1	1.529	r	0. 1131	1. 82%	83.12%
15	0111_1	1.639	r	0.0967	1.56%	84.68%
72	2111_0	14.903	m	0.0000	0.00%	100.00%

0110_1 to racemo (most stable TS)

at 343 K

Predicted r:m 48.29%:51.71%

Experimental r:m ~65%:35%

Prediction is not good Need further investigation

0111_0 to meso (+0.307 kcal/mol)